日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)證明:∥平面, 查看更多

           

          題目列表(包括答案和解析)

          平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點.
          (1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達式并給出證明;
          (2)求證:這n條直線把平面分成
          n(n+1)2
          +1
          個區(qū)域.

          查看答案和解析>>

          平面直角坐標系中,O為坐標原點,已知兩點M(1,-3)、N(5,1),若點C滿足
          OC
          =t
          OM
          +(1-t)
          ON
          (t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
          (Ⅰ)求證:
          OA
          OB
          ;
          (Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

          查看答案和解析>>

          平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
          12
          AE=2
          ,O、M分別為CE、AB的中點.
          (I)求證:OD∥平面ABC;
          (II)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

          查看答案和解析>>

          平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點.
          (1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達式并給出證明;
          (2)求證:這n條直線把平面分成數(shù)學(xué)公式個區(qū)域.

          查看答案和解析>>

          平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BD⊥BA,BD=
          1
          2
          AE=2
          ,O、M分別為CE、AB的中點.
          (I)求證:OD平面ABC;
          (II)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          一、選擇題:本大題共10小題,每小題5分,共50分.

           

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          A

          D

          C

          B

          D

          A

          B

          B

          C

          D

           

           

          二、填空題:本大題7小題,每小題4分,共28分.

          11、;   12、 ;   13、;   14、;   15、;  16、 ;17、。

           

          三、解答題

          18、(1)略      ……………………………………………………………………(7分)

          (2)就是二面角的平面角,即,

           …………………………………………………………………(9分) 

           取中點,則平面,

          就是與平面所成的角。   …………………………(11分)

          ,

          所以與平面所成的角的大小為。 …………………………(14分)

          (用向量方法,相應(yīng)給分)

           

          19、(1),  …………(7分)

              (2),當(dāng)時,;當(dāng)時,

          ,而,

                  ……………………………………………(14分)

           

          20、(1)當(dāng),當(dāng)k=1時,

           ………………………………………  (7分) 

          (2)由已知,又設(shè),則

          ,

          知當(dāng)時,為增函數(shù),則知為增函數(shù)!14分)

          (用導(dǎo)數(shù)法相應(yīng)給分)

          21、.解:(1)、設(shè),則,

           ∵點P分所成的比為   ∴    ∴  

               代入中,得 為P點的軌跡方程.

          當(dāng)時,軌跡是圓. …………………………………………………(7分)

          (2)、由題設(shè)知直線l的方程為, 設(shè)

          聯(lián)立方程組  ,消去得: 

          ∵ 方程組有兩解  ∴   ∴    

             ∵

                ∴    

           又 ∵    ∴    解得(舍去)或

          ∴ 曲線C的方程是  ……………………………………………(14分)

          22、解(1)   ………………………………………………(5分) 

          猜想    ,    …………………………………………………………(7分)

          證明(略)  ……………………………………………………………………(10分)

            (2),要使恒成立,

          恒成立  

          恒成立.

          (i)當(dāng)為奇數(shù)時,即恒成立, 又的最小值為1,  

          (ii)當(dāng)為偶數(shù)時,即恒成立,  又的最大值為,

                   即,又,為整數(shù),

           ∴,使得對任意,都有 …………………………………( 16分)

           

           


          同步練習(xí)冊答案