日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)如果直線的一個方向向量為.且過點.直線交曲線于 查看更多

           

          題目列表(包括答案和解析)

          平面直角坐標系內(nèi)的向量都可以用一有序?qū)崝?shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設(shè)直線l的傾斜角為α(α90°).在l上任取兩個不同的點,不妨設(shè)向量的方向是向上的,那么向量的坐標是().過原點作向量,則點P的坐標是(),而且直線OP的傾斜角也是α.根據(jù)正切函數(shù)的定義得

          ,

          這就是《數(shù)學(xué)2》中已經(jīng)得到的斜率公式.上述推導(dǎo)過程比《數(shù)學(xué)2》中的推導(dǎo)簡捷.你能用向量作為工具討論一下直線的有關(guān)問題嗎?例如:

          (1)過點,平行于向量的直線方程;

          (2)向量(A,B)與直線的關(guān)系;

          (3)設(shè)直線的方程分別是

          ,

          ,

          那么,,的條件各是什么?如果它們相交,如何得到它們的夾角公式?

          (4)到直線的距離公式如何推導(dǎo)?

          查看答案和解析>>

          已知曲線C:

          (1)由曲線C上任一點E向x軸作垂線,垂足為F,點P分所成的比為,問:點P的軌跡可能是圓嗎?請說明理由;

          (2)如果直線l的一個方向向量為,且過點M(0,-2),直線l交曲線C于A、B兩點,又,求曲線C的方程.

          查看答案和解析>>

          (本小題滿分12分)已知曲線C

          (1)由曲線C上任一點E向x軸作垂線,垂足為F,點P分所成的比為,問:點P的軌跡可能是圓嗎?請說明理由;

          如果直線l的一個方向向量為,且過點M(0,-2),直線l交曲線C于A、B兩點,又,求曲線C的方程.

          查看答案和解析>>

          本題有⑴、⑵、⑶三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.
          (1)(本小題滿分7分)選修4—2:矩陣與變換
          已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點變換成,求矩陣M。
          (2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程
          過點M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點,試確定的值。
          (3)(本小題滿分7分)選修4—5:不等式選講
          已知實數(shù)滿足,,試確定的最大值。

          查看答案和解析>>

          本題有⑴、⑵、⑶三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.

          (1)(本小題滿分7分)選修4—2:矩陣與變換

          已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點變換成,求矩陣M。

          (2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程

          過點M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點,試確定的值。

          (3)(本小題滿分7分)選修4—5:不等式選講

          已知實數(shù)滿足,,試確定的最大值。

           

           

          查看答案和解析>>

          一、選擇題:本大題共10小題,每小題5分,共50分.

           

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          A

          D

          C

          B

          D

          A

          B

          B

          C

          D

           

           

          二、填空題:本大題7小題,每小題4分,共28分.

          11、;   12、 ;   13、;   14、;   15、;  16、 ;17、

           

          三、解答題

          18、(1)略      ……………………………………………………………………(7分)

          (2)就是二面角的平面角,即,

           …………………………………………………………………(9分) 

           取中點,則平面,

          就是與平面所成的角。   …………………………(11分)

          ,,

          所以與平面所成的角的大小為。 …………………………(14分)

          (用向量方法,相應(yīng)給分)

           

          19、(1),,  …………(7分)

              (2),當時,;當時,

          ,而,

                  ……………………………………………(14分)

           

          20、(1)當,當k=1時,

           ………………………………………  (7分) 

          (2)由已知,又設(shè),則

          ,

          知當時,為增函數(shù),則知為增函數(shù)!14分)

          (用導(dǎo)數(shù)法相應(yīng)給分)

          21、.解:(1)、設(shè),則,

           ∵點P分所成的比為   ∴    ∴  

               代入中,得 為P點的軌跡方程.

          時,軌跡是圓. …………………………………………………(7分)

          (2)、由題設(shè)知直線l的方程為, 設(shè)

          聯(lián)立方程組  ,消去得: 

          ∵ 方程組有兩解  ∴   ∴    

             ∵

                ∴    

           又 ∵    ∴    解得(舍去)或

          ∴ 曲線C的方程是  ……………………………………………(14分)

          22、解(1)   ………………………………………………(5分) 

          猜想    ,    …………………………………………………………(7分)

          證明(略)  ……………………………………………………………………(10分)

            (2),要使恒成立,

          恒成立  

          恒成立.

          (i)當為奇數(shù)時,即恒成立, 又的最小值為1,  

          (ii)當為偶數(shù)時,即恒成立,  又的最大值為,

                   即,又為整數(shù),

           ∴,使得對任意,都有 …………………………………( 16分)

           

           


          同步練習(xí)冊答案