日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22.某小組有6個同學.其中4個同學從來沒有參加過數(shù)學研究性學習活動.2個同學曾經(jīng)參加過數(shù)學研究性學習活動. (1)現(xiàn)從該小組中任選2個同學參加數(shù)學研究性學習活動.求恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率, 查看更多

           

          題目列表(包括答案和解析)

          某小組共有8名同學,其中男生6人,女生2人,現(xiàn)從中按性別分層隨機抽4個參加一項公益活動,則不同的抽取方法共有

          [  ]

          A.40種

          B.70種

          C.80種

          D.240種

          查看答案和解析>>

          高三某班有甲、乙兩個學習小組,每組都有10名同學,其中甲組有4名女同學和6名男同學;乙組有6名女同學和4名男同學.現(xiàn)采用分層抽樣分別從甲、乙兩組中各抽2名同學進行學習情況調查.求:

          (1)從甲組抽取的同學中恰有1名女同學的概率;

          (2)抽取的4名同學中恰有2名男同學的概率.

          查看答案和解析>>

          高三某班有甲、乙兩個學習小組,每組都有10名同學,其中甲組有4名女同學;乙組有6名女同學,F(xiàn)采用分層抽樣從甲、乙兩組中共抽取4名同學進行學習情況調查。

             (1)求從甲、乙兩組各抽取的人數(shù);

             (2)求從甲組抽取的同學中恰有1名女同學的概率;

             (3)求抽取的4名同學中恰有2名男同學的概率。

          查看答案和解析>>

          (2012•九江一模)某校高二年級興趣小組,為了分析2011年我國宏觀經(jīng)濟形勢,上網(wǎng)查閱了2010年和2011年1-10月我國GPI同比(即當年某月與前一年同月相比)的增長數(shù)據(jù)(見下表),但今年4,5兩個月的數(shù)據(jù)(分別記為x,y)沒有查到.有的同學清楚記得今年3,4,5三個月的GPI數(shù)據(jù)的平均數(shù)是5.4,方差的3倍是0.02,且x<y.
          附表:我國2010年和2011年前十月的GPI數(shù)據(jù)(單位:百分點)
          年份 一月 二月 三月 四月 五月 六月 七月 八月 九月 十月
          2010 1.5 2.7 2.4 2.8 3.1 2.9 3.3 3.5 3.6 4.4
          2011 4.9 4.9 5.4 x y 6.4 6.5 6.2 6.1 5.5
          注:1個百分點=1%
          (1)求x,y的值;
          (2)一般認為,某月GPI達到或超過3個百分點就已經(jīng)通貨膨脹,而達到或超過5個百分點則嚴重通貨膨脹.現(xiàn)隨機地從2010年的十個月和2011年的十個月的數(shù)據(jù)中各抽取一個數(shù)據(jù),求相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹的概率.
          注:方差計算公式:s2=
          1
          n
          [(x1-
          .
          x
          2+(x2-
          .
          x
          2+L+(xn-
          .
          x
          2)],其中:
          .
          x
          =
          x1+x2+Lxn
          n

          查看答案和解析>>

          某小組有6個同學,其中4個同學從來沒有參加過數(shù)學研究性學習活動,2個同學曾經(jīng)參加過數(shù)學研究性學習活動.
          (1)現(xiàn)從該小組中任選2個同學參加數(shù)學研究性學習活動,求恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率;
          (2)若從該小組中任選2個同學參加數(shù)學研究性學習活動,活動結束后,該小組沒有參加過數(shù)學研究性學習活動的同學個數(shù)ξ是一個隨機變量.求隨機變量ξ的分布列及數(shù)學期望E(ξ).

          查看答案和解析>>

          一:填空題

          1、2;  2、x∈R,使x2+1<x;  3、π;  4、;  5、既不充分也不必要條件;

          6、1+i;   7、;     8、5;     9、;    10、(-∞, -)∪(,+∞);

          11、2或5;    12、9;  13、b1?b22?b33?…?bnn=;    14、;

          二:解答題

          15.解:(1)∵(a=(cosα,sinα) (b=(cosβ,sinβ)

          ∴(a?(b=cos(α-β) =cos=         …………………………………………5分

          (2)∵………7分

          α+β=2α-(α-β)= -(α-β)         ……………………………………9分

          或7……………14分

          16、證明:(1)令BC中點為N,BD中點為M,連結MN、EN

          ∵MN是△ABC的中位線

          ∴   MN∥CD       …………………………2分

          由條件知AE∥CD ∴MN∥AE 又MN=CD=AE 

          ∴四邊形AEMN為平行四邊形

          ∴AN∥EM …………………………4分

          ∵AN面BED, EM面BED

          ∴AN∥面BED……………………6分

          (2)   ∵AE⊥面ABC, AN面ABC

          ∴AE⊥AN  又∵AE∥CD,AN∥EM∴EM⊥CD………………8分

          ∵N為BC中點,AB=AC∴AN⊥BC

          *∴EM⊥BC………………………………………………10分

          ∴EM⊥面BCD…………………………………………12分

          ∵EM面BED  ∴  面BED⊥面BCD  ……14分

          17.解:(1)取弦的中點為M,連結OM

          由平面幾何知識,OM=1

                             …………………………………………3分

          解得:,               ………………………………………5分

          ∵直線過F、B ,∴     …………………………………………7分

          (2)設弦的中點為M,連結OM

                        ……………………………………10分

          解得                       …………………………………………12分

          ……………………………15分

                            

          18.(1)延長BD、CE交于A,則AD=,AE=2

               則S△ADE= S△BDE= S△BCE=,  ∵S△APQ=,

              ∴…………………7分

          (2)

                    =?………………12分

              當,即……15分

          19.解(1)證:       由  得

          在C1上點處的切線為y-2e=2(x-e),即y=2x

          又在C2上點處切線可計算得y-2e=2(x-e),即y=2x

          ∴直線l與C1、C2都相切,且切于同一點(e,2e)      …………………5分

          (2)據(jù)題意:M(t, +e),N(t,2elnt),P(t,2t)

          ∵+e-2t=≥0,∴+e ≥2t

          設h(t)= 2t-2elnt,則由h/(t)=2-=0得t=e ;

          當t∈(0,e)時h/(t)<0,h(t)單調遞減;且當t∈(e,+∞)時h/(t)>0,h(t)單調遞增;

          ∴t>0有h(t)≥h(e)=0  ∴2t≥2elnt

          ∴f(t)=+e-2t-(2t-2elnt)= +e -4t+2elnt………………4分

          f(t)= +2e-4==≥0…………………7分

             ∴上遞增∴當………10分

          (3)

          設上式為 ,假設取正實數(shù),則?

          時,,遞減;

          ,遞增. ……………………………………12分

                           

              

          ∴不存在正整數(shù),使得              …………………16分

          20.解:(1),

          對一切恒成立

          的最小值,又………………4分

          (2)這5個數(shù)中成等比且公比的三數(shù)只能為

          只能是,

                …………………………8分

          ,,

          顯然成立             ……………………………………12分

          時,,

          ∴使成立的自然數(shù)n恰有4個正整數(shù)的p值為3……16分

          三:理科附加題

          21. A.解:(1)

             ∴AB=CD                          …………………………4分

          (2)由相交弦定理得2×1=(3+OP)(3-OP)

          ,∴               ……………………………………10分

          B.解:依題設有:     ………………………………………4分

           令,則           …………………………………………5分

                     …………………………………………7分

            ………………………………10分

          C.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1),由

          所以

          為圓的直角坐標方程.  ……………………………………3分

          同理為圓的直角坐標方程. ……………………………………6分

          (2)由      

          相減得過交點的直線的直角坐標方程為. …………………………10分

          D.證明:(1)因為

              所以          …………………………………………4分

              (2)∵   …………………………………………6分

              同理,……………………………………8分

              三式相加即得……………………………10分

          22.解:(1)記“恰好選到1個曾參加過數(shù)學研究性學習活動的同學”為事件的,

          則其概率為                …………………………………………4分

              答:恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率為

          (2)隨機變量

          P(ξ=2)= =; P(ξ=3)= =;………7分

          2

          3

          4

          P

            ∴隨機變量的分布列為

                              ………………10分

          23.(1),,,

          ,………………3分

             (2)平面BDD1的一個法向量為,設平面BFC1的法向量為

          得平面BFC1的一個法向量

          ∴所求的余弦值為                     ……………………………………6分

          (3)設

          ,由

          ,

          ,時,時,∴   ……………10分

           

           

           

           


          同步練習冊答案