日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1) 若.求證:平面平面, 查看更多

           

          題目列表(包括答案和解析)

          平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)M(1,-3)N(5,1),若點(diǎn)C滿足
          OC
          =t
          OM
          +(1-t)
          ON
          (t∈R)

          (Ⅰ)求點(diǎn)C的軌跡方程;
          (Ⅱ)設(shè)點(diǎn)C的軌跡與拋物線y2=4x交于A、B兩點(diǎn),求證:
          OA
          OB

          (Ⅲ)求以AB為直徑的圓的方程.

          查看答案和解析>>

          平面直角坐標(biāo)系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個(gè)點(diǎn)
          (n∈N*,k、b均為非零常數(shù)).
          (1)若數(shù)列{xn}成等差數(shù)列,求證:數(shù)列{yn}也成等差數(shù)列;
          (2)若點(diǎn)P是直線l上一點(diǎn),且
          OP
          =a1
          OA1
          +a2
          OA2
          ,求a1+a2的值;
          (3)若點(diǎn)P滿足
          OP
          =a1
          OA1
          +a2
          OA2
          +…+an
          OAn
          ,我們稱
          OP
          是向量
          OA1
          OA2
          ,…,
          OAn
          的線性組合,{an}是該線性組合的系數(shù)數(shù)列.當(dāng)
          OP
          是向量
          OA1
          OA2
          ,…,
          OAn
          的線性組合時(shí),請參考以下線索:
          ①系數(shù)數(shù)列{an}需滿足怎樣的條件,點(diǎn)P會(huì)落在直線l上?
          ②若點(diǎn)P落在直線l上,系數(shù)數(shù)列{an}會(huì)滿足怎樣的結(jié)論?
          ③能否根據(jù)你給出的系數(shù)數(shù)列{an}滿足的條件,確定在直線l上的點(diǎn)P的個(gè)數(shù)或坐標(biāo)?
          試提出一個(gè)相關(guān)命題(或猜想)并開展研究,寫出你的研究過程.[本小題將根據(jù)你提出的命題(或猜想)的完備程度和研究過程中體現(xiàn)的思維層次,給予不同的評分].

          查看答案和解析>>

          平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足
          OC
          =t
          OM
          +(1-t)
          ON
          (t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
          (Ⅰ)求證:
          OA
          OB
          ;
          (Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過原點(diǎn).若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

          查看答案和解析>>

          平面向量
          a
          =(
          3
          ,-1)
          ,
          b
          =(
          1
          2
          3
          2
          )
          ,若存在不同時(shí)為o的實(shí)數(shù)k和x,使
          m
          =
          a
          +(x2-3)
          b
          ,
          n
          =-k
          a
          +x
          b
          m
          n

          (Ⅰ)試求函數(shù)關(guān)系式k=f(x).
          (Ⅱ)對(Ⅰ)中的f(x),設(shè)h(x)=4f(x)-ax2在[1,+∞)上是單調(diào)函數(shù).
          ①求實(shí)數(shù)a的取值范圍;
          ②當(dāng)a=-1時(shí),如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求證:h(x0)=x0

          查看答案和解析>>

          平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0)、B(0,-2),點(diǎn)C滿足   
          OC
          OA
          OB
          ,其中α
          、β∈R,且α-2β=1
          (1)求點(diǎn)C的軌跡方程;
          (2)設(shè)點(diǎn)C的軌跡與橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          交于兩點(diǎn)M、N,且以MN為直徑的圓過原點(diǎn),求證:
          1
          a2
          +
          1
          b2
          為定值
          ;
          (3)在(2)的條件下,若橢圓的離心率不大于
          2
          2
          ,求橢圓長軸長的取值范圍.

          查看答案和解析>>

          一、填空

          1、;2、;3、;4、;5、;6、5;7、;8、;9、

          10、;11、;12、;13、;14、

          二、解答題

             1`5、(本題滿分14分)

          解:(1)(設(shè)“該隊(duì)員只屬于一支球隊(duì)的”為事件A,則事件A的概率

                   

          (2)設(shè)“該隊(duì)員最多屬于兩支球隊(duì)的”為事件B,則事件B的概率為

          答:(略)

          16、(本題滿分14分)

          解:(1)連,四邊形菱形   ,

            的中點(diǎn),

                         ,

                             

          (2)當(dāng)時(shí),使得,連,交,則 的中點(diǎn),又上中線,為正三角形的中心,令菱形的邊長為,則。

                     

                 

             即:  

          17、解:

          (1)

                    ,

                 

                  在區(qū)間上的值域?yàn)?sub>

               (2)   

                           

                     ,

                

                

                 

                 

          18、解:(1)依題意,得:,

                    拋物線標(biāo)準(zhǔn)方程為:

                (2)設(shè)圓心的坐標(biāo)為,半徑為。

                  圓心軸上截得的弦長為

                   

                  圓心的方程為:

                從而變?yōu)椋?sub>      ①

          對于任意的,方程①均成立。

          故有:     解得:

                所以,圓過定點(diǎn)(2,0)。

          19、解(1)當(dāng)時(shí),

                   令  得 所以切點(diǎn)為(1,2),切線的斜率為1,

                所以曲線處的切線方程為:。

             (2)①當(dāng)時(shí),,

                ,恒成立。 上增函數(shù)。

          故當(dāng)時(shí),

          ②  當(dāng)時(shí),

          (i)當(dāng)時(shí),時(shí)為正數(shù),所以在區(qū)間上為增函數(shù)。故當(dāng)時(shí),,且此時(shí)

          (ii)當(dāng),即時(shí),時(shí)為負(fù)數(shù),在間 時(shí)為正數(shù)。所以在區(qū)間上為減函數(shù),在上為增函數(shù)

          故當(dāng)時(shí),,且此時(shí)

          (iii)當(dāng);即 時(shí),時(shí)為負(fù)數(shù),所以在區(qū)間[1,e]上為減函數(shù),故當(dāng)時(shí),

          綜上所述,當(dāng)時(shí),時(shí)和時(shí)的最小值都是

          所以此時(shí)的最小值為;當(dāng)時(shí),時(shí)的最小值為

          ,而,

          所以此時(shí)的最小值為。

          當(dāng)時(shí),在時(shí)最小值為,在時(shí)的最小值為,

          ,所以此時(shí)的最小值為

          所以函數(shù)的最小值為

          20、解:(1)設(shè)數(shù)列的公差為,則,

               依題得:,對恒成立。

          即:,對恒成立。

          所以,即:

          ,故的值為2。

          (2)

             

            所以,

          ①     當(dāng)為奇數(shù),且時(shí),。

            相乘得所以 當(dāng)也符合。

          ②     當(dāng)為偶數(shù),且時(shí),,

          相乘得所以

          ,所以 。因此 ,當(dāng)時(shí)也符合。

          所以數(shù)列的通項(xiàng)公式為。

          當(dāng)為偶數(shù)時(shí),

            

          當(dāng)為奇數(shù)時(shí),為偶數(shù),

           

           

          所以 

           

           

           

           

           

           

           

           

           

           

          南京市2009屆高三第一次調(diào)研試

          數(shù)學(xué)附加題參考答案

           

          21、選做題

               .選修:幾何證明選講

           證明:因?yàn)?sub>切⊙O于點(diǎn),所以

                 因?yàn)?sub>,所以

            又A、B、C、D四點(diǎn)共圓,所以 所以

           又,所以

          所以   即

          所以    即:

          B.選修4-2:矩陣與變換

          解:由題設(shè)得,設(shè)是直線上任意一點(diǎn),

          點(diǎn)在矩陣對應(yīng)的變換作用下變?yōu)?sub>,

          則有, 即 ,所以

          因?yàn)辄c(diǎn)在直線上,從而,即:

          所以曲線的方程為 

          C.選修4-4;坐標(biāo)系與參數(shù)方程

          解: 直線的參數(shù)方程為 為參數(shù))故直線的普通方程為

             因?yàn)?sub>為橢圓上任意點(diǎn),故可設(shè)其中

            因此點(diǎn)到直線的距離是

          所以當(dāng),時(shí),取得最大值。

          D.選修4-5:不等式選講

          證明:,所以 

                

          必做題:第22題、第23題每題10分,共20分。

          22、解:(1)設(shè)圓的半徑為

                   因?yàn)閳A與圓,所以

                   所以,即:

                  所以點(diǎn)的軌跡是以為焦點(diǎn)的橢圓且設(shè)橢圓方程為其中 ,所以

                所以曲線的方程

              (2)因?yàn)橹本過橢圓的中心,由橢圓的對稱性可知,

                  因?yàn)?sub>,所以。

                 不妨設(shè)點(diǎn)軸上方,則。

          所以,,即:點(diǎn)的坐標(biāo)為

          所以直線的斜率為,故所求直線方和程為

          23、(1)當(dāng)

          同步練習(xí)冊答案