日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 本題主要考查解三角形和向量的運(yùn)算等相關(guān)知識(shí).要求學(xué)生涉及三角形中三角恒等變換時(shí).要從化角或化邊的角度入手.合理運(yùn)用正弦定理或余弦定理進(jìn)行化簡(jiǎn)變形,在第二小題中.要強(qiáng)調(diào)多元問(wèn)題的消元意識(shí).進(jìn)而轉(zhuǎn)化為函數(shù)的最值問(wèn)題.注意定義域的確定對(duì)結(jié)論的影響.并指明取最值時(shí)變量的取值. 查看更多

           

          題目列表(包括答案和解析)

          在△ABC中,為三個(gè)內(nèi)角為三條邊,

          (I)判斷△ABC的形狀;

          (II)若,求的取值范圍.

          【解析】本題主要考查正余弦定理及向量運(yùn)算

          第一問(wèn)利用正弦定理可知,邊化為角得到

          所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。

          第二問(wèn)中,

          得到。

          (1)解:由及正弦定理有:

          ∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,則A=C,∴是等腰三角形。

          (2)

           

          查看答案和解析>>

          已知直三棱柱中, , , 的交點(diǎn), 若.

          (1)求的長(zhǎng);  (2)求點(diǎn)到平面的距離;

          (3)求二面角的平面角的正弦值的大小.

          【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問(wèn)中,利用ACCA為正方形, AC=3

          第二問(wèn)中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問(wèn)中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

          解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

          (2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分

          (3) 易得AC面ACB, 過(guò)E作EHAB于H, 連HC, 則HCAB

          CHE為二面角C-AB-C的平面角. ………  9分

          sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

          解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

          =(2, -, -), =(0, -3, -h(huán))  ……… 4分

          ·=0,  h=3

          (2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

          點(diǎn)A到平面ABC的距離為H=||=……… 8分

          (3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

          二面角C-AB-C的大小滿足cos== ………  11分

          二面角C-AB-C的平面角的正弦大小為

           

          查看答案和解析>>

          1、證明兩角差的余弦公式

              2、由推導(dǎo)兩角和的余弦公式.

          3、已知△ABC的面積,且,求.

          【解析】本試題主要是考查了利用三角函數(shù)總兩角和差的三角關(guān)系式證明。并能,結(jié)合向量的知識(shí)進(jìn)行求解三角形問(wèn)題的綜合運(yùn)用。

           

          查看答案和解析>>

          在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

          (Ⅰ)求角B的大;

          (Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

          【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用

          第一問(wèn)中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

          p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

          根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

          ,又由余弦定理=2acosB,所以cosB=,B=

          第二問(wèn)中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

          =2ksinA+-=-+2ksinA+=-+ (k>1).

          而0<A<,sinA∈(0,1],故當(dāng)sin=1時(shí),m·n取最大值為2k-=3,得k=.

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案