題目列表(包括答案和解析)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當(dāng)時
單調(diào)遞減;當(dāng)
時
單調(diào)遞增,故當(dāng)
時,
取最小值
于是對一切恒成立,當(dāng)且僅當(dāng)
. 、
令則
當(dāng)時,
單調(diào)遞增;當(dāng)
時,
單調(diào)遞減.
故當(dāng)時,
取最大值
.因此,當(dāng)且僅當(dāng)
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當(dāng)
時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增.故當(dāng)
,
即
從而,
又
所以因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知函數(shù)在
取得極值
(1)求的單調(diào)區(qū)間(用
表示);
(2)設(shè),
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用
根據(jù)題意在
取得極值,
對參數(shù)a分情況討論,可知
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
第二問中, 由(1)知:
在
,
,
在
從而求解。
解:
…..3分
在
取得極值,
……………………..4分
(1) 當(dāng)即
時 遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
………….6分
(2) 由(1)知:
在
,
,
在
……………….10分
, 使
成立
得:
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓的方程;
(II)若過點(diǎn)(2,0)的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn)),當(dāng)
<
時,求實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
C
[解析] 由題意知a·b=4(x-1)+2y=0,∴2x+y=2,∴9x+3y=32x+3y≥2=6,等號成立時,x=
,y=2,故選C.
解析:由題意知
當(dāng)-2≤x≤1時,f(x)=x-2,
當(dāng)1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數(shù),
∴f(x)的最大值為f(2)=23-2=6.
答案:C
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com