日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示.將一矩形花壇擴建成一個更大的矩形花園.要求B在上.D在上.且對角線過C點.已知AB=3米.AD=2米. 查看更多

           

          題目列表(包括答案和解析)

          如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線點,已知米,米.

          (I)要使矩形的面積大于32平方米,則的長應在什么范圍內(nèi)?

          (II)當的長度是多少時,矩形花壇的面積最。坎⑶蟪鲎钚≈

          查看答案和解析>>

          如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

          (1)設(單位:米),要使花壇的面積大于32平方米,求的取值范圍;

          (2)若(單位:米),則當的長度分別是多少時,花壇的面積最大?并求出最大面積.

           

          查看答案和解析>>

          如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

          (1)設(單位:米),要使花壇的面積大于32平方米,求的取值范圍;

          (2)若(單位:米),則當的長度分別是多少時,花壇的面積最大?并求出最大面積.

           

          查看答案和解析>>

          如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

          (1)設(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
          (2)若(單位:米),則當,的長度分別是多少時,花壇的面積最大?并求出最大面積.

          查看答案和解析>>

          如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

          (1)設(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
          (2)若(單位:米),則當,的長度分別是多少時,花壇的面積最大?并求出最大面積.

          查看答案和解析>>

          第Ⅰ部分(正卷)

          一、填空題:本大題共14小題,每小題5分,計70分。

          1、    2、    3、對任意使    4、2    5、

          6、    7、    8、8      9、        10、40

          11、    12、4       13、    14、

          二、解答題:本大題共6小題,計90分。解答應寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi)。

          15、解:(1)解:,

          ,有,

          解得。                                         ……7分

          (2)解法一:       ……11分

                       。  ……14分

            解法二:由(1),,得

             

                                                  ……10分

          于是,

                         ……12分

          代入得。            ……14分

          16、證明:(1)∵

                                                    ……4分

          (2)令中點為,中點為,連結(jié)、

               ∵的中位線

                     ……6分   

          又∵

               ……8分

               ∴

               ∵為正

                   ……10分

               ∴

               又∵,

           ∴四邊形為平行四邊形    ……12分

              ……14分

          17、解:(1)設米,,則

                                                          ……2分

                                                      ……4分

                                                      ……5分

          (2)                   ……7分

                

               

               此時                                               ……10分

          (3)∵

          ,                       ……11分

          時,

          上遞增                       ……13分

          此時                                                ……14分

          答:(1)

              (2)當的長度是4米時,矩形的面積最小,最小面積為24平方米;

              (3)當的長度是6米時,矩形的面積最小,

          最小面積為27平方米。                              ……15分

          18、(1)解:①若直線的斜率不存在,即直線是,符合題意。   ……2分

          ②若直線斜率存在,設直線,即

          由題意知,圓心以已知直線的距離等于半徑2,即:

          解之得                                                  ……5分

          所求直線方程是,                            ……6分

          (2)解法一:直線與圓相交,斜率必定存在,且不為0,可設直線方程為

                                 ……8分

          又直線垂直,由 ……11分

          ……13分

                       為定值。

             故是定值,且為6。                            ……15分

          19、解:(1)由題意得,                             ……2分

          ,    ∴    ……3分

          ,∴

          單調(diào)增函數(shù),                                             ……5分

          對于恒成立。      ……6分

          (2)方程;   ∴  ……7分

               ∵,∴方程為                      ……9分

               令,

                ∵,當時,,∴上為增函數(shù);

               時,,  ∴上為減函數(shù),    ……12分

               當時,                     ……13分

          ,            

          ∴函數(shù)、在同一坐標系的大致圖象如圖所示,

          ∴①當,即時,方程無解。

          ②當,即時,方程有一個根。

          ③當,即時,方程有兩個根。    ……16分

           

           

           

           

           

           

           

           

          第Ⅱ部分(附加卷)

          一、必做題

          21、解:(1)由

          同步練習冊答案