日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分15分)

          已知函數(shù),其中 (),若相鄰兩對稱軸間的距離不小于

             (Ⅰ)求的取值范圍;

             (Ⅱ)在中,分別是角的對邊,,當(dāng)最大時(shí),,求的面積.

          查看答案和解析>>

          (本小題滿分15分)

          某旅游商品生產(chǎn)企業(yè),2009年某商品生產(chǎn)的投入成本為1元/件,

          出廠價(jià)為流程圖的輸出結(jié)果元/件,年銷售量為10000件,

          因2010年國家長假的調(diào)整,此企業(yè)為適應(yīng)市場需求,

          計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每件投入成本增加的

          比例為),則出廠價(jià)相應(yīng)提高的比例為

          同時(shí)預(yù)計(jì)銷售量增加的比例為

          已知得利潤(出廠價(jià)投入成本)年銷售量.

          (Ⅰ)寫出2010年預(yù)計(jì)的年利潤

          與投入成本增加的比例的關(guān)系式;

          (Ⅱ)為使2010年的年利潤比2009年有所增加,

          問:投入成本增加的比例應(yīng)在什么范圍內(nèi)?

          查看答案和解析>>

          (本小題滿分15分)某地有三個(gè)村莊,分別位于等腰直角三角形ABC的三個(gè)頂點(diǎn)處,已知AB=AC=6km,現(xiàn)計(jì)劃在BC邊的高AO上一點(diǎn)P處建造一個(gè)變電站. 記P到三個(gè)村莊的距離之和為y.

          (1)設(shè),把y表示成的函數(shù)關(guān)系式;

          (2)變電站建于何處時(shí),它到三個(gè)小區(qū)的距離之和最小?

          查看答案和解析>>

          (本小題滿分15分)如圖,已知圓Ox2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為的橢圓,其右焦點(diǎn)為F.若點(diǎn)P(-1,1)為圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)證明:直線PQ與圓O相切.

          查看答案和解析>>

          (本小題滿分15分)已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足,其前n項(xiàng)和為Sn.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)若S2S1,Sm(m∈N*)的等比中項(xiàng),求正整數(shù)m的值.

          查看答案和解析>>

          第Ⅰ部分(正卷)

          一、填空題:本大題共14小題,每小題5分,計(jì)70分。

          1、    2、    3、對任意使    4、2    5、

          6、    7、    8、8      9、        10、40

          11、    12、4       13、    14、

          二、解答題:本大題共6小題,計(jì)90分。解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi)。

          15、解:(1)解:,

          ,有,

          解得。                                         ……7分

          (2)解法一:       ……11分

                       。  ……14分

            解法二:由(1),,得

             

                                                  ……10分

          于是

                         ……12分

          代入得。            ……14分

          16、證明:(1)∵

                                                    ……4分

          (2)令中點(diǎn)為,中點(diǎn)為,連結(jié)、

               ∵的中位線

                     ……6分   

          又∵

               ……8分

               ∴

               ∵為正

                   ……10分

               ∴

               又∵,

           ∴四邊形為平行四邊形    ……12分

              ……14分

          17、解:(1)設(shè)米,,則

                                                          ……2分

                                                      ……4分

                                                      ……5分

          (2)                   ……7分

                

               

               此時(shí)                                               ……10分

          (3)∵

                                 ……11分

          當(dāng)時(shí),

          上遞增                       ……13分

          此時(shí)                                                ……14分

          答:(1)

              (2)當(dāng)的長度是4米時(shí),矩形的面積最小,最小面積為24平方米;

              (3)當(dāng)的長度是6米時(shí),矩形的面積最小,

          最小面積為27平方米。                              ……15分

          18、(1)解:①若直線的斜率不存在,即直線是,符合題意。   ……2分

          ②若直線斜率存在,設(shè)直線,即。

          由題意知,圓心以已知直線的距離等于半徑2,即:,

          解之得                                                  ……5分

          所求直線方程是,                            ……6分

          (2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為

                                 ……8分

          又直線垂直,由 ……11分

          ……13分

                       為定值。

             故是定值,且為6。                            ……15分

          19、解:(1)由題意得,                             ……2分

          ,    ∴    ……3分

          ,∴

          單調(diào)增函數(shù),                                             ……5分

          對于恒成立。      ……6分

          (2)方程;   ∴  ……7分

               ∵,∴方程為                      ……9分

               令,

                ∵,當(dāng)時(shí),,∴上為增函數(shù);

               時(shí),,  ∴上為減函數(shù),    ……12分

               當(dāng)時(shí),                     ……13分

          ,            

          ∴函數(shù)、在同一坐標(biāo)系的大致圖象如圖所示,

          ∴①當(dāng),即時(shí),方程無解。

          ②當(dāng),即時(shí),方程有一個(gè)根。

          ③當(dāng),即時(shí),方程有兩個(gè)根。    ……16分

           

           

           

           

           

           

           

           

          第Ⅱ部分(附加卷)

          一、必做題

          21、解:(1)由

          同步練習(xí)冊答案