日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. B.求點P(2.)到直線的距離. 查看更多

           

          題目列表(包括答案和解析)

           已知拋物線上任意一點到焦點F的距離比到軸的距離大1,

             (1)求拋物線C的方程;

             (2)過焦點F的直線與拋物線交于A、B兩點,求面積的最小值。

             (3)過點的直線交拋物線于P、Q兩點,設(shè)點P關(guān)于軸的對稱點為R,求證:直線RQ必過定點.

           

           

           

           

           

           

           

           

          查看答案和解析>>

          已知定點A(-1,0),F(xiàn)(2,0),定直線l:x=。不在x軸上的動點P與點F的距離是它到直線l的距離的2倍,設(shè)點P的軌跡為E,過點F的直線交E于B、C兩點,直線AB、AC分別交l于點M、N,
          (Ⅰ)求E的方程;
          (Ⅱ)試判斷以線段MN為直徑的圓是否過點F,并說明理由.

          查看答案和解析>>

          如圖,橢圓C:(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分。
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)求△ABP的面積取最大時直線l的方程

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=,且橢圓C上的點到點Q (0,3)的距離最大值為4,過點M(3,0)的直線交橢圓C于點A、B.
          (1)求橢圓C的方程。
          (2)設(shè)P為橢圓上一點,且滿足(O為坐標(biāo)原點),當(dāng)|AB|<時,求實數(shù)t的取值范圍.

          查看答案和解析>>

          (本小題滿分10分)已知中心在原點O,焦點在軸上的橢圓C的離心率為,點A,B分別是橢圓C的長軸、短軸的端點,點O到直線AB的距離為。

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)已知點E(3,0),設(shè)點P、Q是橢圓C上的兩個動點,滿足EP⊥EQ,

          的取值范圍.

           

          查看答案和解析>>

          一、選擇題:(每小題5分,共60分)

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          B

          A

          B

          D

          D

          D

          A

          A

          D

          B

          B

          C

           

          二、填空題(每小題4分,共16分)

          13.90°   14. m<且m≠-    15. 12      16.

          三、解答題

          17.(12分)           (3分)

                     sinsin+coscos=                  (6分)

                     cos(-)=                              (8分)

                                       (10分)

                   ∴sin(-)=-             (12分)

          18.(12分)

            (1)略              (6分)

            (2)不垂直          (12分)

          方法一:求出EF=,BE=,取EC中點G,BG=2,GF=1,BF=

          ∴△BEF是等腰三角形

          ∴EF與BF不垂直

          ∴EF與平面BDC不垂直。

          方法二:向量法,如圖建立坐標(biāo)系

          E(0,0,0),F(xiàn)(1,1,0),B(0,1,2),C(0,2,0)

                  =(1,1,0),=(0,1,2)

                 

          ∴EF與BC不垂直   ∴EF與平面BDC不垂直。

            19.(12分)

            (1)方法一:直線亙這定點P(0,1)           (2分)

          而P(0,1)在橢圓C內(nèi)           (3分)

                     ∴與C恒有兩個不同交點        (4分)

            方法二:由     (2分)

                    △=(2m)2+4×3×(4+m2)>0                    (3分)

                    ∴與C恒有兩個不同交點                   (4分)

            (2)方法一:設(shè)A(x1,y1),B(x2,y2),M(x,y)則

                             (6分)

                     x1+x2+=0(∵x1≠x2)

                       x1+x2=2x,y1+y2=2y,k=m             (8分)

                    ∴x+m=0                            (9分)

                    又y=mx+1                            (10分)

                  消去m得4x2+(y-)2=                (12分)

                  ∴M點軌跡方程為4x2+y2-y=0(y≠0)

          方法二:由(4+m2)x2+2mx-3=0

                                   (10分)

                   消去m得4x2+y2-y=0(y≠0)    

                  ∴M點軌跡方程為4x2+y2-y=0(y≠0)          (12分)

          20.(14分)

          (理)(1)P1=,P2=,P3=

          (2)Pn+2-Pn+1=

             ∴

             ∴{Pn+2-Pn+1}是公比為-的等比數(shù)列                       (10分)

          (3) Pn+2-Pn+1=(P2-P1)?(-)n-1=(-)n+1

             P2-P1=(-)2,P3-P2=(-)3,……,Pn-Pn-1=(-)n

            相加:Pn-P1=(-)2+(-)3+…+(-)n=[1-(-)n-1]

            ∴Pn=                                         (14分)

          (文)(1)an=       (4分)

          b1=a1=2,b2=,q=

          bn=b1qn-1=2?()n-1                                  (7分)

          (2)Cn=                       (8分)

            Tn=1+3?41+5?42+……+(2n-1)?4n-1

           4Tn=4+3?42+5?43+……+(2n-1)?4n

          -3Tn=1+2?41+2?42+……+2?4n-1 -(2n-1)?4n

          =-[(6n-5)4n+5]

          ∴Tn=[(6n-5)4n+5]

          21.(14分)

          (理)(1)f′(x)=4+2ax-2x2,由題意f′(x)≥0在[-1,1]上恒成立  (2分)

          ∴A=[-1,1]                            (5分)

          (2)方程f(x)=2x+x3可化為x(x2-ax-2)=0

            ∵x1≠x2≠0, ∴x1,x2是x2-ax-2=0兩根          (7分)

            △=a2+8>0,x1+x2=a,x1x2=2

            ∴|x1-x2|=

            ∵-1≤a≤1    ∴|x1-x2|最大值是       (10分)

            ∴m2+tm+1≥3在t∈[-1,1]上恒成立

            令g(t)=mt+t2-2

            ∴

          m≥2或m≤-2                                 (14分)

          故存在m值,其取值范圍為(-∞,-2]∪[2,+∞)

          (文)(1)f′(x)=3x2+b

              由已知f′(x)在[-1,1]上恒成立       (3分)

           ∴b≥-3x2在[-1,1] 上恒成立

           ∵-3x2在[-1,1]上最大值為0            (6分)

           ∴b≥0                                 (7分)

          (2)f(x)在[-1,1]上最大值為f(1)=1+b       (9分)

           ∴b2-tb+1≥1+b                          (10分)

             即b2-(t+1)b≥0恒成立,由b≥0得

           ∴b-(t+1)≥0,t+1≤b恒成立

           ∴t≤-1                                 (14分)

          四、選考題:(10分)

          A.(1)△ABE≌△ACD     (5分)

             (2)△ABC∽△BEC    

               ∴           (8分)

               ∴AE=            (10分)

          B.P(2,)          P()        (3分)

                    x-y+2=0      (7分)

             D=                 (10分)

          C.設(shè)a=cos,b=sin,c=cos,d=sin          (4分)

            |ac+bd|=|coscos+sinsin|              (6分)

                   =|cos(-)|≤1                      (10分)

          方法二:只需證(ac+bd)2≤(a2+b2)(c2+d2)         (6分)

                  即證:2abcd≤a2d2+b2c2                 (8分)

                  即證:(ad-bc)2≥0

                 上式顯然成立

                 ∴原不等式成立。                       (10分)

           


          同步練習(xí)冊答案