日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)和原點(diǎn)在直線的兩側(cè).則實(shí)數(shù)的取值范圍是 查看更多

           

          題目列表(包括答案和解析)

          已知點(diǎn)(3,1)和原點(diǎn)(0,0)在直線3x-ay+1=0的兩側(cè),則實(shí)數(shù)a的取值范圍是( )
          A.(-∞,10)
          B.(10,+∞)
          C.(-∞,9)
          D.(9,+∞)

          查看答案和解析>>

          已知點(diǎn)(3,1)和原點(diǎn)(0,0)在直線3x-ay+1=0的兩側(cè),則實(shí)數(shù)a的取值范圍是( 。
          A.(-∞,10)B.(10,+∞)C.(-∞,9)D.(9,+∞)

          查看答案和解析>>

          (2009•臺(tái)州一模)已知點(diǎn)(3,1)和原點(diǎn)(0,0)在直線3x-ay+1=0的兩側(cè),則實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

          【解析】第一問(wèn)當(dāng)時(shí),,則

          依題意得:,即    解得

          第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,。∴上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增!最大值為

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無(wú)解,因此。此時(shí),

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

          因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          1-10.CDBBA   CACBD

          11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

          18.

          解:(1)由已知            7分

          (2)由                                                                   10分

          由余弦定理得                          14分

           

          19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

          ∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

          (2)解:過(guò)C作CE⊥AB于E,連接PE,

          ∵PA⊥底面ABCD,∴CE⊥面PAB,

          ∴直線PC與平面PAB所成的角為,                                                    10分

          ∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

          中求得CE=,∴.                                                  14分

           

          20.解:(1)由①,得②,

          ②-①得:.                              4分

          (2)由求得.          7分

          ,   11分

          .                                                                 14分

           

          21.解:

          (1)由得c=1                                                                                     1分

          ,                                                         4分

            1. 市一次模文數(shù)參答―1(共2頁(yè))

                                                                                                      5分

              (2)時(shí)取得極值.由,.                                                                                          8分

              ,,∴當(dāng)時(shí),,

              上遞減.                                                                                       12分

              ∴函數(shù)的零點(diǎn)有且僅有1個(gè)     15分

               

              22.解:(1) 設(shè),由已知,

              ,                                        2分

              設(shè)直線PB與圓M切于點(diǎn)A,

                                                               6分

              (2) 點(diǎn) B(0,t),點(diǎn),                                                                  7分

              進(jìn)一步可得兩條切線方程為:

              ,                                   9分

              ,

              ,,                                          13分

              ,又時(shí),,

              面積的最小值為                                                                            15分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>