日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分13分)有一問題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是

           如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m      

             (1)兩人都未解決的概率;

             (2)問題得到解決的概率。

          查看答案和解析>>

          (本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

          (1) 求數(shù)列、的通項(xiàng)公式;

          (2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

          查看答案和解析>>

          (本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.

          (1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);

          (2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

          查看答案和解析>>

          (本小題滿分13分)

          如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

          (Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

          (Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

          體ABCDEF的體積。

           

          查看答案和解析>>

          (本小題滿分13分)兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

          查看答案和解析>>

          一、選擇題

          1.B    2.C    3.C    4.C    5.B    6.A

          7.A    8.D    9.B    10.D   

          二、填空題

          11.86;1.6;12.1/6   13.( 4,8)   14.108   15.(1),(2),(3)

          三、解答題

          16.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

          ,可得.又,可知,

          ,

          解得. 由題意得. 

          故數(shù)列的通項(xiàng)為.……………………………6分

             (2)由于   由(1)得 

             

          =  ……………..13分

          17.(1)∵=a, AB=2a,BC=a,

          E為的中點(diǎn)。

          ,

          DE⊥CE……(2分)

          又∵∴DE⊥EB  ,而                      

          ∴DE⊥平面BCE…(6分)

          (2) 取DC的中點(diǎn)F,則EF⊥平面BCD,作FH⊥BD于H,連EH,則∠EHF就是二面角E-BD-C的一個(gè)平面角!8分)

          由題意得  EF=a,在Rt△ 中,…………(10分)

          ∠EHF=.……………………………………………(13分)

          18.解:由已知,,

          (1)若。若A是直角,則k=-2;若B是直角,則

          k(2-k)+3=0, k=-1,k=3;若C是直角,則2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率為

          (2)若且k≠.區(qū)間長度L=6.若B是鈍角,則-k(2-k)-3<0, -1<k<3,L′=4. △ABC中B是鈍角的概率

          k(2-k)+3=0, k=-1,k=3;若C是直角,則2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率為.

          求△ABC是直角三角形的概率.

          19.解:(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點(diǎn)P的軌跡C是以為焦點(diǎn),

          長半軸為2的橢圓.它的短半軸,

          故曲線C的方程為.????????????????????????????????????????????????????????????????????????? 4分

          (Ⅱ)設(shè),其坐標(biāo)滿足

          消去y并整理得,

          .??????????????????????????????????????????????????????????????????????? 6分

          ,即.而,

          于是

          所以時(shí),,故.???????????????????????????????????????????????????????? 8分

          當(dāng)時(shí),,

          ,

          所以.   13分

          20.解:(1) 

          當(dāng)時(shí),

          函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)。…….3分

             (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

          由②知對,都有

          又因?yàn)?sub>恒成立, 

          ,即,即

          ,

          當(dāng)時(shí),,其頂點(diǎn)為(-1,0)滿足條件①,又,都有,滿足條件②。

          ∴存在,使同時(shí)滿足條件①、②!..8分

             (3)令,則

          ,

          內(nèi)必有一個(gè)實(shí)根。即,使成立。….13分

          21.(1)1;    (2)

           

          (2)(1)設(shè)M=,則有=,=,

          所以   解得,所以M=.…………………………5分

          (2)任取直線l上一點(diǎn)P(x,y)經(jīng)矩陣M變換后為點(diǎn)P’(x’,y’).

          因?yàn)?sub>,所以又m:,

          所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………7分

          不等式證明選講)若,證明 。

          柯西不等式一步可得

           

          www.ks5u.com

           

           


          同步練習(xí)冊答案