日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A.1 B.-1 C.2 D.(4)如圖.程序框圖所進(jìn)行的求和運算是 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)如圖,已知圓O:x2+y2=1,O為坐標(biāo)原點.
          (1)邊長為
          2
          的正方形ABCD的頂點A、B均在圓O上,C、D在圓O外,當(dāng)點A在圓O上運動時,C點的軌跡為E.
          ①求軌跡E的方程;
          ②過軌跡E上一定點P(x0,y0)作相互垂直的兩條直線l1,l2,并且使它們分別與圓O、軌跡E相交,設(shè)l1被圓O截得的弦長為a,設(shè)l2被軌跡E截得的弦長為b,求a+b的最大值.
          (2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長度的最值.

          查看答案和解析>>

          精英家教網(wǎng)如圖,已知直線L:x=my+1過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點F,且交橢圓C于A,B兩點,點A,F(xiàn),B在直線G:x=a2上的射影依次為點D,K,E,
          (1)已知拋物線x2=4
          3
          y
          的焦點為橢圓C的上頂點.
          ①求橢圓C的方程;
          ②若直線L交y軸于點M,且
          MA
          =λ1
          AF
          ,
          MB
          =λ2
          BF
          ,當(dāng)m變化時,求λ12的值;
          (2)連接AE,BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標(biāo)并給予證明;否則說明理由.

          查看答案和解析>>

          精英家教網(wǎng)如圖,已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          2
          2
          ,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(
          2
          +1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
          (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
          (Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

          查看答案和解析>>

          精英家教網(wǎng)如圖,△ABC的內(nèi)切圓與三邊AB、BC、CA的切點分別為D、E、F,已知B(-
          2
          ,0)
          ,C(
          2
          ,0)
          ,內(nèi)切圓圓心I(1,t).設(shè)A點的軌跡為L
          (1)求L的方程;
          (2)過點C作直線m交曲線L于不同的兩點M、N,問在x軸上是否存在一個異于點C的定點Q.使
          QM
          QC
          |
          QM
          |
          =
          QN
          QC
          |
          QN
          |
          對任意的直線m都成立?若存在,求出Q的坐標(biāo),若不存在,說明理由.

          查看答案和解析>>

          如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=
          3
          2
          ,BC=
          1
          2
          .橢圓C以A、B為焦點且經(jīng)過點D
          (1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;
          (2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
          (理)若點E滿足
          EC
          =
          1
          2
          AB
          ,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.

          查看答案和解析>>

          一、選擇題(每小題5分,共60分)

             BDACC   ACDDB  AA

          二、填空題(每小題4分,共16分)

            (13) ;   (14);   (15);   (16)②③。

          三、解答題(共74分)

          (17)解:(I)由于弦定理,

          代入。

                                                     …………………………………4分

                ……………………………………6分

                                        ……………………………………7分

                             …………………………………8分

          (Ⅱ),                     ………………………………10分

           由,得。             ………………………………11分

          所以,當(dāng)時,取得最小值為0,   ………………………………12分

          (18)解:(I)由已知得

                        故

                        即

                        故數(shù)列為等比數(shù)列,且

                        又當(dāng)時,

                                             ………………………………6分

                        而亦適合上式

                                          …………………………………8分

                   (Ⅱ)

                         所以

                               

                                                ………………………………12分

          (19)解:(I)由該四棱錐的三視圖可知,該四棱錐的底面的邊長為1的正方形,側(cè)棱,

                                                             ……………………………4分

                  (Ⅱ)連結(jié),則的中點,

                       的中點,

                      

                       又平面內(nèi),

                       平面                   ………………8分

                  (Ⅲ)不論點在何位置,都有   ………………9分

                       證明:連結(jié),是正方形,

                            

                            

                             又,

                            

                                     …………12分

          (20分)解:

          (I)利用樹形圖我們可以列出連續(xù)抽取2張卡片的所有可能結(jié)果(如下圖所示)。

                      由上圖可以看出,實驗的所有可能結(jié)果數(shù)為20.因為每次都隨機(jī)抽取,因次

          這20種結(jié)果出現(xiàn)的可能性是相同的,實驗屬于古典概型。 ……………2分用

          表示事“連續(xù)抽取2人都是女生”,則互斥,并且表示事

          件“連續(xù)抽取2張卡片,取出的2人不全是男生”,由列出的所有可能結(jié)果可

          以看出,的結(jié)果有12種,的結(jié)果有2種,由互斥事件的概率加法公式,

          可得

          ,

          即連續(xù)抽取2張卡片,取出的2人不全是男生的概率為0.7……………6分

                (Ⅱ)有放回地連續(xù)抽取2張卡片,需注意同一張卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我們用一個有序?qū)崝?shù)對表示抽取的結(jié)果,例如“第一次取出2號,第二次取出4號”就用(2,4)來表示,所有的可能結(jié)果可以用下表列出。

             

             第二次抽取

           

          第一次抽取

          1

          2

          3

          4

          5

          1

          (1,1)

          (1,2)

          (1,3)

          (1,4)

          (1,5)

          2

          (2,1)

          (2,2)

          (2,3)

          (2,4)

          (2,5)

          3

          (3,1)

          (3,2)

          (3,3)

          (3,4)

          (3,5)

          4

          (4,1)

          (4,2)

          (4,3)

          (4,4)

          (4,5)

          5

          (5,1)

          (5,2)

          (5,3)

          (5,4)

          (5,5)

                 

                     試驗的所有可能結(jié)果數(shù)為25,并且這25種結(jié)果出現(xiàn)的可能性是相同的,試驗屬于古典型。                                …………………………8分

                     用表示事件“獨唱和朗誦由同一個人表演”,由上表可以看出,的結(jié)果共

          有5種,因此獨唱和朗誦由同一個人表演的概率

                                ……………………………12分

          (21)解:

          (I)

                    依題意有                           ………………………2分

                    即  解得          …………………………4分

                   

                    由,得                   

                     的單調(diào)遞減區(qū)間是            ………………………6分

               (Ⅱ)由  得   ………………………8分

                     不等式組確定的平面區(qū)域如圖陰影部分所示:

                     由   得        ………………………8分

                      不等式組確定的平面區(qū)域如圖陰影部分所示:

                     由   得

                      點的坐標(biāo)為(0,-1).   ………………10分

                     設(shè)表示平面區(qū)域內(nèi)的點()與點

                      連線斜率。

                      由圖可知,

                      即……………12分

          (22)解:

          (I)設(shè)橢圓方程為

               則根據(jù)題意,雙曲線的方程為

               且滿足

                     解方程組得    ……………………4分

               橢圓的方程為,雙曲線的方程 ………………6分

          (Ⅱ)由(I)得

                設(shè)則由的中點,所以點坐標(biāo)為

          ,

          坐標(biāo)代入橢圓和雙曲線方程,得

          消去,得

          解之得(舍)

          所以,由此可得

          所以                        …………………………10分

          當(dāng)時,直線的方程是

          代入,得

          所以或-5(舍)                ……………………………12分

          所以

          軸。

          所以   ……………………14分

           

           


          同步練習(xí)冊答案