日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 故橢圓C的方程為+y2=1. --------5分 查看更多

           

          題目列表(包括答案和解析)

          (2007•河北區(qū)一模)已知橢圓C的方程為 
          x2
          a2
          +
          y2
          b2
          =1 
          (a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
          (Ⅰ)若
          OP
          +
          OQ
          a
          =(-3,1)共線,求橢圓C的方程;
          (Ⅱ)已知直線l:x+y-
          1
          2
          =0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標和此雙曲線E的方程.

          查看答案和解析>>

          已知橢圓C的方程為
          x 2
          4
          +
          y2
          3
          =1,過C的右焦點F的直線與C相交于A、B兩點,向量
          m
          =(-1,-4),若向量
          OA
          -
          OB
          m
          -
          OF
          共線,則直線AB的方程是( 。

          查看答案和解析>>

          精英家教網(wǎng)已知橢圓C的方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,點A、B分別為其左、右頂點,點F1、F2分別為其左、右焦點,以點A為圓心,AF1為半徑作圓A;以點B為圓心,OB為半徑作圓B;若直線l: y=-
          3
          3
          x
          被圓A和圓B截得的弦長之比為
          15
          6
          ;
          (1)求橢圓C的離心率;
          (2)己知a=7,問是否存在點P,使得過P點有無數(shù)條直線被圓A和圓B截得的弦長之比為
          3
          4
          ;若存在,請求出所有的P點坐標;若不存在,請說明理由.

          查看答案和解析>>

          (2012•衡陽模擬)已知橢圓C的方程為
          y2
          a2
          +
          x2
          b2
          =1(a>b>0),離心率e=
          2
          2
          ,上焦點到直線y=
          a2
          c
          的距離為
          2
          2
          ,直線l與y軸交于一點P(0,m),與橢圓C交于相異兩點A,B且
          AP
          =t
          PB

          (1)求橢圓C的方程;
          (2)若
          OA
          +t
          OB
          =4
          OP
          ,求m的取值范圍•

          查看答案和解析>>

          給定橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(>b>0),將圓心在原點O、半徑是
          a2+b2
          的圓稱為橢圓C的“準圓”.已知橢圓C的方程為
          x2
          3
          +y2=1.
          (Ⅰ)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
          (Ⅱ)若點A是橢圓C的“準圓”與X軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
          AB
          AD
          的取值范圍.

          查看答案和解析>>


          同步練習冊答案