日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解](Ⅰ)的所有取值為.... 查看更多

           

          題目列表(包括答案和解析)

          在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

          (Ⅰ)求角B的大;

          (Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

          【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用

          第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

          p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

          根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

          ,又由余弦定理=2acosB,所以cosB=,B=

          第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

          =2ksinA+-=-+2ksinA+=-+ (k>1).

          而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

           

          查看答案和解析>>

          如圖,,,…,,…是曲線上的點,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

          (1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設,對所有,恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用有得到

          第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,

          第三問 

          .………………………2分

          因為函數(shù)在區(qū)間上單調(diào)遞增,所以當時,最大為,即

          解:(1)依題意,有,………………4分

          (2)證明:①當時,可求得,命題成立; ……………2分

          ②假設當時,命題成立,即有,……………………1分

          則當時,由歸納假設及,

          解得不合題意,舍去)

          即當時,命題成立.  …………………………………………4分

          綜上所述,對所有,.    ……………………………1分

          (3) 

          .………………………2分

          因為函數(shù)在區(qū)間上單調(diào)遞增,所以當時,最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          學校要用三輛車從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個數(shù)的分布列和數(shù)學期望。

          【解析】第一問中,由已知條件結(jié)合n此獨立重復試驗的概率公式可知,得

          第二問中可能的取值為0,1,2,3  ,       

           , 

          從而得到分布列和期望值

          解:(I)由已知條件得 ,即,則的值為

           (Ⅱ)可能的取值為0,1,2,3  ,       

           , 

             的分布列為:(1分)

           

          0

          1

          2

          3

           

           

           

           

          所以 

           

          查看答案和解析>>

          已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點.

          (Ⅰ)當直線過右焦點時,求直線的方程;

          (Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

          【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

          第二問中設,由,消去x,得

          則由,知<8,且有

          由題意知O為的中點.由可知從而,設M是GH的中點,則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>

          在平面直角坐標系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.

          (Ⅰ)將曲線C1上的所有點的橫坐標,縱坐標分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程.

          (Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

          【解析】(Ⅰ)根據(jù)極坐標與普通方程的互化,將直線l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點到直線的距離公式表示出距離,求最值.

           

          查看答案和解析>>


          同步練習冊答案