日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析](1)由題意 即 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (I)求橢圓的方程;

          (II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

          【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。

          第一問中,利用

          第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

          解:(1)由題意知

           

          查看答案和解析>>

          如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且是母線的中點.

          (1)求圓錐體的體積;

          (2)異面直線所成角的大。ńY果用反三角函數(shù)表示).

          【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

          第一問中,由題意,,故

          從而體積.2中取OB中點H,聯(lián)結PH,AH.

          由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得

          中,,PH=1/2SB=2,,

          ,所以異面直線SO與P成角的大arctan

          解:(1)由題意,,

          從而體積.

          (2)如圖2,取OB中點H,聯(lián)結PH,AH.

          由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.

          OAH中,由OAOB得

          中,,PH=1/2SB=2,

          ,所以異面直線SO與P成角的大arctan

           

          查看答案和解析>>

          如圖,三棱柱中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點。

          (I) 證明:平面⊥平面

          (Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.

          【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質(zhì)及幾何體的體積計算,考查空間想象能力、邏輯推理能力,是簡單題.

          【解析】(Ⅰ)由題設知BC⊥,BC⊥AC,,∴,    又∵,∴,

          由題設知,∴=,即,

          又∵,   ∴⊥面,    ∵,

          ∴面⊥面;

          (Ⅱ)設棱錐的體積為,=1,由題意得,==,

          由三棱柱的體積=1,

          =1:1,  ∴平面分此棱柱為兩部分體積之比為1:1

           

          查看答案和解析>>

          已知正數(shù)數(shù)列{an }中,a1 =2.若關于x的方程 ()對任意自然數(shù)n都有相等的實根.

          (1)求a2 ,a3的值;

          (2)求證

          【解析】(1)中由題意得△,即,進而可得,. 

          (2)中由于,所以,因為,所以數(shù)列是以為首項,公比為2的等比數(shù)列,知數(shù)列是以為首項,公比為的等比數(shù)列,利用裂項求和得到不等式的證明。

          (1)由題意得△,即,進而可得   

          (2)由于,所以,因為,所以數(shù)列是以為首項,公比為2的等比數(shù)列,知數(shù)列是以為首項,公比為的等比數(shù)列,于是

          ,

          所以

           

          查看答案和解析>>

          在等比數(shù)列中,;

          (1)求數(shù)列的通項公式; (2)求數(shù)列的前項和

          【解析】第一問中利用等比數(shù)列中,,兩項確定通項公式即可

          第二問中,在第一問的基礎上,然后求和。

          解:(1)由題意得到:

                 ……6分

          (2)      ……①

             …… ②

          ①-②得到

           

          查看答案和解析>>


          同步練習冊答案