日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)中.是否存在正整數(shù)k.使得對(duì)于任意的正整數(shù)n.都有成立?證明你的結(jié)論. 查看更多

           

          題目列表(包括答案和解析)

          對(duì)于數(shù)列{xn},從中選取若干項(xiàng),不改變它們?cè)谠瓉頂?shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為a1,公差為d的無窮等差數(shù)列{an}的子數(shù)列問題,為此,他取了其中第一項(xiàng)a1,第三項(xiàng)a3和第五項(xiàng)a5
          (1)若a1,a3,a5成等比數(shù)列,求d的值;
          (2)在a1=1,d=3 的無窮等差數(shù)列{an}中,是否存在無窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請(qǐng)給出數(shù)列{bn}的通項(xiàng)公式并證明;若不存在,說明理由;
          (3)他在研究過程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>1)的無窮等比數(shù)列{cn},總可以找到一個(gè)子數(shù)列{bn},使得{dn}構(gòu)成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項(xiàng)ck,cm,cn(k<m<n),由ck+cn與2cm的大小關(guān)系去判斷該命題是否正確.他將得到什么結(jié)論?

          查看答案和解析>>

          已知實(shí)數(shù)x,y滿足
          x+3y-3n-1≤0
          2x-y+n-2≤0
          ,其中n∈N*,目標(biāo)函數(shù)z=x+y的最大值記為an,又?jǐn)?shù)列{bn}滿足:nb1+(n-1)b2+…+2bn-1+bn=(
          9
          10
          n-1+(
          9
          10
          n-2+…+
          9
          10
          +1
          (1)求數(shù)列{an},{bn}的通項(xiàng)公式;
          (2)若cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對(duì)于{cn}中任意一項(xiàng)cn,都有cn≤ck成立?證明你的結(jié)論.

          查看答案和解析>>

          設(shè)向量,(n為正整數(shù)),函數(shù)在[0,1]上的最小值與最大值的和為an,又?jǐn)?shù)列{bn}滿足:
          (1)求證:an=n+1(2).
          (2)求bn的表達(dá)式.
          (3)若cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.(注:表示意義相同)

          查看答案和解析>>

          設(shè)向量,(n為正整數(shù)),函數(shù)在[0,1]上的最小值與最大值的和為an,又?jǐn)?shù)列{bn}滿足:
          (1)求證:an=n+1(2).
          (2)求bn的表達(dá)式.
          (3)若cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.(注:表示意義相同)

          查看答案和解析>>

          (2012•順義區(qū)二模)對(duì)于定義域?yàn)锳的函數(shù)f(x),如果任意的x1,x2∈A,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴(yán)格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴(yán)格增函數(shù),并且滿足條件f(f(k))=3k.
          (Ⅰ)判斷函數(shù)f(3x)=2×3x(x∈N)是否是N上的嚴(yán)格增函數(shù);
          (Ⅱ)證明:f(3k)=3f(k);
          (Ⅲ)是否存在正整數(shù)k,使得f(k)=2012,若存在求出k值;若不存在請(qǐng)說明理由.

          查看答案和解析>>

           

          一、選擇題

          1―5 CADBA    6―10 CBABD    11―12 CC

          二、填空題

          13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

          16.①③

          三、解答題

          17.解:(1)由題意得   ………………2分

             

             (2)由可知A、B都是銳角,   …………7分

             

              這時(shí)三角形為有一頂角為120°的等腰三角形   …………12分

          18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

             

             (2)   ………………12分

             (文)解:(1);  ………………6分

             (2)因?yàn)?sub>

                …………10分

              所以   …………12分

          19.解:(1),   ………………1分

              依題意知,   ………………3分

             (2)令   …………4分

               …………5分

              所以,…………7分

             (3)由上可知

              ①當(dāng)恒成立,

              必須且只須, …………8分

              ,

               則   ………………9分

              ②當(dāng)……10分

              要使當(dāng)

              綜上所述,t的取值范圍是   ………………12分

          20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求!1分

             

             (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

          則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

          因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。

          作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

          求得 …………8分

          方法二:設(shè)B1到平面PAB的距離為h,則由

            ………………8分

             (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

          則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,

          所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

          要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

          在矩形CEE1C1中,

          解得

            1. 解法二:(1)取B1C1的中點(diǎn)O,則A1O⊥B1C1

              以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖,

                 (2)是平面PAB的一個(gè)法向量,

                 ………………5分

                 ………………6分

                ………………8分

                 (3)設(shè)P點(diǎn)坐標(biāo)為(),則

              設(shè)是平面PAB的一個(gè)法向量,與(2)同理有

                  令

                  同理可求得平面PA1B1的一個(gè)法向量   ………………10分

                  要使平面PAB⊥平面PA1B1,只需

                    ………………11分

                  解得: …………12分

              21.(理)解:(1)由條件得

                 

                 (2)①設(shè)直線m ……5分

                 

                  ②不妨設(shè)M,N的坐標(biāo)分別為

              …………………8分

              因直線m的斜率不為零,故

                 (文)解:(1)設(shè)  …………2分

                 

                  故所求雙曲線方程為:

                 (2)設(shè),

                 

                  由焦點(diǎn)半徑,  ………………8分

                 

              22.(1)證明:

                  所以在[0,1]上為增函數(shù),   ………………3分

                 (2)解:由

                 

                 (3)解:由(1)與(2)得 …………9分

                  設(shè)存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立,

                     ………………10分

                 

                  ,   ………………11分

                  當(dāng),   ………………12分

                  當(dāng)    ………………13分

                  所在存在正整數(shù)

                  都有成立.   ………………14分

               

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>