日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C: 的中心關于直線 的對稱點落在直線 (其中)上.且橢圓 C 的離心率為 .(Ⅰ)求橢圓 C 的方程, 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為,它的一個頂點恰好是拋物線x2=4的焦點.
          (I)求橢圓C的標準方程;
          (II)若A、B是橢圓C上關x軸對稱的任意兩點,設P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
          (III)設O為坐標原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求的取值范圍.

          查看答案和解析>>

          已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為,它的一個頂點恰好是拋物線y=x2的焦點.
          (I)求橢圓C的標準方程;
          (II)若A、B是橢圓C上關x軸對稱的任意兩點,設P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
          (III)設O為坐標原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求的取值范圍.

          查看答案和解析>>

          已知橢圓W的中心在原點,焦點在x軸上,離心率為
          6
          3
          ,兩條準線間的距離為6.橢圓W的左焦點為F,過左準線與x軸的交點M任作一條斜率不為零的直線l與橢圓W交于不同的兩點A、B,點A關于x軸的對稱點為C.
          (Ⅰ)求橢圓W的方程;
          (Ⅱ)求證:
          CF
          FB
          (λ∈R);
          (Ⅲ)求△MBC面積S的最大值.

          查看答案和解析>>

          已知橢圓E的中心在坐標原點,焦點在x軸上,短軸長與焦距相等,直線x+y-1=0與E相交于A,B兩點,與x軸相交于C點,且
          AC
          =3
          CB

          (Ⅰ)求橢圓E的方程;
          (Ⅱ)如果橢圓E上存在兩點M,N關于直線l:y=4x+m對稱,求實數(shù)m的取值范圍.

          查看答案和解析>>

          已知橢圓W的中心在原點,焦點在X軸上,離心率為
          6
          3
          ,橢圓短軸的一個端點與兩焦點構成的三角形的面積為2
          2
          ,橢圓W的左焦點為F,過x軸的一點M(-3,0)任作一條斜率不為零的直線L與橢圓W交于不同的兩點A、B,點A關于X軸的對稱點為C.
          (1)求橢圓W的方程;
          (2)求證:
          CF
          FB
          (λ∈R);
          (3)求△MBC面積S的最大值.

          查看答案和解析>>

           

          一.選擇題(本大題共12小題,每小題5分,共60分.)

          D C B B C       D C A C C       A B

          二.填空題(本大題共4小題,每小題4分,共16分.)

          (13)        (14)        (15)        (16)―1

          三.解答題

          (17)(本小題滿分12分)

          解:(Ⅰ)將一顆骰子先后拋擲2次,此問題中含有36個等可能的基本事件.    2分

          記“兩數(shù)之和為7”為事件A,則事件A中含有6個基本事件(將事件列出更好),

          ∴ P(A)

          記“兩數(shù)之和是4的倍數(shù)”為事件B,則事件B中含有9個基本事件,

          ∴ P(B)

              ∵ 事件A與事件B是互斥事件,∴ 所求概率為 .         8分

              (Ⅱ)記“點(x,y)在圓  的內(nèi)部”事件C,則事件C中共含有11個基本事件,∴ P(C)=.                                                   12分

          (18)(本小題滿分12分)

          解:(Ⅰ)∵ ABC―A1B1C1是正棱柱,

          ∴ BB1⊥AC,BP⊥AC.∴ AC ⊥ 平面PBB1

          又∵M、N分別是AA1、CC1的中點,

          ∴ MN∥AC.∴ MN ⊥ 平面PBB1      4分

          (Ⅱ)∵MN∥AC,∴A C ∥ 平面MNQ.

          QN是△B1CC1的中位線,∴B1C∥QN.∴B1C∥平面MNQ.

          ∴平面AB1 C ∥ 平面MNQ.                                               8分

          (Ⅲ)由題意,△MNP的面積

          Q點到平面ACC1A1的距離H顯然等于△A1B1C1的高的一半,也就是等于BP的一半,

          .∴三棱錐 Q ― MNP 的體積.              12分

          (19)(本小題滿分12分)

          解:(Ⅰ):

                    3分

          依題意,的周期,且,∴ .∴

          .                                            5分

          [0,], ∴ ,∴ ≤1,

            ∴ 的最小值為 ,即    ∴

                                                     7分

          (Ⅱ)∵ =2, ∴

          又 ∵ ∠∈(0,), ∴ ∠.                                  9分

          △ABC中,∵ ,,

          ,.解得

          又 ∵ 0, ∴ .                                 12分

          (20)(本小題滿分12分)

          解:(Ⅰ)對求導得

          依題意有 ,且 .∴ ,且

          解得 . ∴ .                             6分

          (Ⅱ)由上問知,令,得

          顯然,當  或  時,;當  時,

          .∴ 函數(shù)上是單調遞增函數(shù),在上是單調遞減函數(shù).

          時取極大值,極大值是

          時取極小值,極小值是.   12分

          (21)(本小題滿分12分)

          解:(Ⅰ)∵ ,

          設O關于直線

          對稱點為的橫坐標為

          又易知直線  解得線段的中點坐標

          為(1,-3).∴

          ∴ 橢圓方程為 .                                           5分

          (Ⅱ)顯然直線AN存在斜率,設直線AN的方程為 ,代入 并整理得:. 

          設點,則

          由韋達定理得 ,.                       8分

          ∵ 直線ME方程為 ,令,得直線ME與x軸的交點

          的橫坐標

          代入,并整理得 .   10分

          再將韋達定理的結果代入,并整理可得

          ∴ 直線ME與軸相交于定點(,0).                                  12分

          (22)(本小題滿分14分)

          證明:(Ⅰ)∵ , ∴

          顯然 , ∴ .                                       5分

          ,,……,,

          將這個等式相加,得 ,∴ .          7分

          (Ⅱ)∵ ,∴ .                     9分

          .即 .                        11分

          ,即

          .                                                14分

           

           

           

           


          同步練習冊答案