日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2. 不在指定答題位置答題或超出答題區(qū)域書寫的答案無(wú)效.在試題卷上答題無(wú)效. 查看更多

           

          題目列表(包括答案和解析)

          本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
          若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
          (1)、選修4-1:幾何證明選講
          如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
          (2)選修4-2:矩陣與變換(本小題滿分10分)
          若點(diǎn)A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
          (3)選修4-2:矩陣與變換(本小題滿分10分)
          在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
          (4)選修4-5:不等式選講(本小題滿分10分)
          已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

          查看答案和解析>>

          附加題:(二選一,請(qǐng)將解題過(guò)程解答在相應(yīng)的框內(nèi),答錯(cuò)位置不給分;多答按第一問(wèn)給分,不重復(fù)給分)
          (1)已知a,b,c>0,且a2+b2=c2,求證:an+bn<cn(n≥3,n∈R+
          (2)已知x,y,z>0,則
          x2+y2+xy
          +
          y2+z2+yz
          z2+x2+xz

          查看答案和解析>>

          (從22/23/24三道解答題中任選一道作答,作答時(shí),請(qǐng)注明題號(hào);若多做,則按首做題計(jì)入總分,滿分10分. 請(qǐng)將答題的過(guò)程寫在答題卷中指定的位置)(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是為參數(shù)),曲線的極坐標(biāo)方程為
          (Ⅰ)求曲線的直角坐標(biāo)方程;
          (Ⅱ)設(shè)直線與曲線相交于,兩點(diǎn),求M,N兩點(diǎn)間的距離.

          查看答案和解析>>

          (從22/23/24三道解答題中任選一道作答,作答時(shí),請(qǐng)注明題號(hào);若多做,則按首做題計(jì)入總分,滿分10分. 請(qǐng)將答題的過(guò)程寫在答題卷中指定的位置)(本小題滿分10分)選修4—5:不等式選講
          設(shè)函數(shù)
          (Ⅰ)求不等式的解集;
          (Ⅱ)若不等式的解集是非空的集合,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          (本小題滿分12分)一次智力競(jìng)賽中,共分三個(gè)環(huán)節(jié):選答、搶答、風(fēng)險(xiǎn)選答,在第一環(huán)節(jié)“選答”中.每個(gè)選手可以從6道題(其中4道選擇題,2道操作題)中任意選3道題作答,答對(duì)每道題可得100分;在第二環(huán)節(jié)“搶答”中,一共為參賽選手準(zhǔn)備了5道搶答題.答對(duì)一道得1 00分,在每一道題的搶答中,每位選手搶到的概率是相等的;在第三環(huán)節(jié)“風(fēng)險(xiǎn)選答”中,一共為選手準(zhǔn)備了A、B、C 三類不同的題目,選手每答對(duì)一道A類、B類、C類的題目將分別得到300分、200分、100分,但如果答錯(cuò),則相應(yīng)地要扣除300分、200分、100分.而選手答對(duì)一道A類、B類、C類題目的概率分別是0.6、0.7、0.8,現(xiàn)有甲、乙、丙三位選手參加比賽,試求:(1)乙選手在第一環(huán)節(jié)中,至少選中一道操作題的概率;

            (2)甲選手在第二環(huán)節(jié)中搶到的題數(shù)多于乙選手而不多于丙選手的概率;(3)在第三環(huán)節(jié)中,就每道題而言,丙選手選擇哪類題目得分的期望值更大.

          查看答案和解析>>

           

          一.選擇題(本大題共12小題,每小題5分,共60分.)

          D C B B C       D C A C C       A A

          二.填空題(本大題共4小題,每小題4分,共16分.)

          (13)       (14)        (15)―1        (16)

          三.解答題

          (17)(本小題滿分12分)

          解:(Ⅰ):

                    3分

          依題意,的周期,且,∴ .∴

          .                                            5分

          [0,], ∴ ,∴ ≤1,

            ∴ 的最小值為 ,即    ∴

                                                     7分

          (Ⅱ)∵ =2, ∴

          又 ∵ ∠∈(0,), ∴ ∠.                                  9分

          △ABC中,∵ ,

          ,.解得

          又 ∵ 0, ∴ .                                 12分

          (18)(本小題滿分12分)

          解:以A點(diǎn)為原點(diǎn),AB為軸,AD為軸,AD

          軸的空間直角坐標(biāo)系,如圖所示.則依題意可知相

          關(guān)各點(diǎn)的坐標(biāo)分別是A(0,0,0),B(,0,0),

          C(,1,0),D(0,1,0),S(0,0,1),

             ∴ M(,1,0),N(,,).                                  2分

             ∴ (0,,),,0,0),,,).    4分

             ∴ .∴

             ∴ MN ⊥平面ABN.                                                      6分

             (Ⅱ)設(shè)平面NBC的法向量為,),則.且又易知 ,

             ∴   即    ∴

             令,則,0,).                                           9分

             顯然,(0,)就是平面ABN的法向量.

             ∴ 二面角的余弦值是.                                    12分

          (19)(本小題滿分12分)

          解:(Ⅰ)由題意得

           

          );                             3分

          同理可得);

          ).                           5分

          (Ⅱ)       8分

          (Ⅲ)由上問(wèn)知 ,即是關(guān)于的三次函數(shù),設(shè)

          ,則

          ,解得  或 (不合題意,舍去).

          顯然當(dāng)  時(shí),;當(dāng)  時(shí),

          ∴ 當(dāng)年產(chǎn)量   時(shí),隨機(jī)變量  的期望  取得最大值.              12分

          (20)(本小題滿分12分)

          解:(Ⅰ)設(shè),)是函數(shù) 的圖象上任意一點(diǎn),則容易求得點(diǎn)關(guān)于直線  的對(duì)稱點(diǎn)為,),依題意點(diǎn),)在的圖象上,

          . ∴ .            2分

           的一個(gè)極值點(diǎn),∴ ,解得

          ∴ 函數(shù)  的表達(dá)式是 ).            4分

          ∵ 函數(shù)  的定義域?yàn)椋?sub>), ∴  只有一個(gè)極值點(diǎn),且顯然當(dāng)

          時(shí),;當(dāng)時(shí),

          ∴ 函數(shù)  的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.           6分

          (Ⅱ)由 ,

          ,∴      9分

           在 時(shí)恒成立.

          ∴ 只需求出  在   時(shí)的最大值和  在

           時(shí)的最小值,即可求得  的取值范圍.

          (當(dāng)  時(shí));

          (當(dāng)  時(shí)).

          ∴   的取值范圍是 .                                         12分

           

          (21)(本小題滿分12分)

          解:(Ⅰ)∵ ,

          設(shè)O關(guān)于直線

          對(duì)稱點(diǎn)為的橫坐標(biāo)為

          又易知直線  解得線段的中點(diǎn)坐標(biāo)

          為(1,-3).∴

          ∴ 橢圓方程為 .                                           5分

          (Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

          設(shè)點(diǎn),,則

          由韋達(dá)定理得 ,.                       8分

          ∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)的橫坐標(biāo)

          ,代入,并整理得 .   10分

          再將韋達(dá)定理的結(jié)果代入,并整理可得

          ∴ 直線ME與軸相交于定點(diǎn)(,0).                                  12分

          (22)(本小題滿分14分)

          證明:(Ⅰ)∵ ,,且 ,N?),

          ∴  .                                                            2分

          去分母,并整理得 .                      5分

          ,,……,,

          將這個(gè)同向不等式相加,得 ,∴ .    7分

          (Ⅱ)∵ ,∴ .                     9分

          .即 .                        11分

          ,即

          .                                                14分

           

           


          同步練習(xí)冊(cè)答案