日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè) .. 分別表示市場情況好.中.差時的利潤.隨機(jī)變量 表示當(dāng)年產(chǎn)量為 而市場情況不確定時的利潤. 查看更多

           

          題目列表(包括答案和解析)

          某企業(yè)準(zhǔn)備投產(chǎn)一批特殊型號的產(chǎn)品,已知該種產(chǎn)品的成本與產(chǎn)量的函數(shù)關(guān)系式為

          該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格與產(chǎn)量的函數(shù)關(guān)系式如下表所示:

          市場情形

          概率

          價格與產(chǎn)量的函數(shù)關(guān)系式

          0.4

          0.4

          0.2

          設(shè)分別表示市場情形好、中差時的利潤,隨機(jī)變量,表示當(dāng)產(chǎn)量為,而市場前景無法確定時的利潤.

          (I)分別求利潤與產(chǎn)量的函數(shù)關(guān)系式;

          (II)當(dāng)產(chǎn)量確定時,求期望

          (III)試問產(chǎn)量取何值時,取得最大值.

          查看答案和解析>>

          19.某企業(yè)準(zhǔn)備投產(chǎn)一批特殊型號的產(chǎn)品,已知該種產(chǎn)品的成本與產(chǎn)量的函數(shù)關(guān)系式為

          該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格與產(chǎn)量的函數(shù)關(guān)系式如下表所示:

          市場情形

          概率

          價格與產(chǎn)量的函數(shù)關(guān)系式

          0.4

          0.4

          0.2

          設(shè)分別表示市場情形好、中、差時的利潤,隨機(jī)變量表示當(dāng)產(chǎn)量為而市場前景無法確定時的利潤.

          (I)分別求利潤與產(chǎn)量的函數(shù)關(guān)系式;

          (II)當(dāng)產(chǎn)量確定時,求期望E;

          (III)試問產(chǎn)量取何值時,E取得最大值.

          查看答案和解析>>

          某企業(yè)準(zhǔn)備投產(chǎn)一批特殊型號的產(chǎn)品,已知該種產(chǎn)品的成本C與產(chǎn)量q的函數(shù)關(guān)系式為數(shù)學(xué)公式.該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格p與產(chǎn)量q的函數(shù)關(guān)系式如下表所示:
          市場情形概率價格p與產(chǎn)量q的函數(shù)關(guān)系式
          0.4p=164-3q
          0.4p=101-3q
          0.2p=70-4q
          設(shè)L1,L2,L3分別表示市場情形好、中差時的利潤,隨機(jī)變量ξk,表示當(dāng)產(chǎn)量為q,而市場前景無法確定的利潤.
          (I)分別求利潤L1,L2,L3與產(chǎn)量q的函數(shù)關(guān)系式;
          (II)當(dāng)產(chǎn)量q確定時,求期望Eξk,試問產(chǎn)量q取何值時,Eξk取得最大值.

          查看答案和解析>>

          某企業(yè)準(zhǔn)備投產(chǎn)一批特殊型號的產(chǎn)品,已知該種產(chǎn)品的成本C與產(chǎn)量q的函數(shù)關(guān)系式為.該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格p與產(chǎn)量q的函數(shù)關(guān)系式如下表所示:
          市場情形概率價格p與產(chǎn)量q的函數(shù)關(guān)系式
          0.4p=164-3q
          0.4p=101-3q
          0.2p=70-3q
          設(shè)L1,L2,L3分別表示市場情形好、中差時的利潤,隨機(jī)變量ξk,表示當(dāng)產(chǎn)量為q,而市場前景無法確定的利潤.
          (I)分別求利潤L1,L2,L3與產(chǎn)量q的函數(shù)關(guān)系式;
          (II)當(dāng)產(chǎn)量q確定時,求期望Eξk,試問產(chǎn)量q取何值時,Eξk取得最大值.

          查看答案和解析>>

          某企業(yè)準(zhǔn)備投產(chǎn)一批特殊型號的產(chǎn)品,已知該種產(chǎn)品的成本C與產(chǎn)量q的函數(shù)關(guān)系式為.該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格p與產(chǎn)量q的函數(shù)關(guān)系式如下表所示:
          市場情形概率價格p與產(chǎn)量q的函數(shù)關(guān)系式
          0.4p=164-3q
          0.4p=101-3q
          0.2p=70-3q
          設(shè)L1,L2,L3分別表示市場情形好、中差時的利潤,隨機(jī)變量ξk,表示當(dāng)產(chǎn)量為q,而市場前景無法確定的利潤.
          (I)分別求利潤L1,L2,L3與產(chǎn)量q的函數(shù)關(guān)系式;
          (II)當(dāng)產(chǎn)量q確定時,求期望Eξk,試問產(chǎn)量q取何值時,Eξk取得最大值.

          查看答案和解析>>

           

          一.選擇題(本大題共12小題,每小題5分,共60分.)

          D C B B C       D C A C C       A A

          二.填空題(本大題共4小題,每小題4分,共16分.)

          (13)       (14)        (15)―1        (16)

          三.解答題

          (17)(本小題滿分12分)

          解:(Ⅰ):

                    3分

          依題意,的周期,且,∴ .∴

          .                                            5分

          [0,], ∴ ,∴ ≤1,

            ∴ 的最小值為 ,即    ∴

                                                     7分

          (Ⅱ)∵ =2, ∴

          又 ∵ ∠∈(0,), ∴ ∠.                                  9分

          △ABC中,∵ ,

          ,.解得

          又 ∵ 0, ∴ .                                 12分

          (18)(本小題滿分12分)

          解:以A點(diǎn)為原點(diǎn),AB為軸,AD為軸,AD

          軸的空間直角坐標(biāo)系,如圖所示.則依題意可知相

          關(guān)各點(diǎn)的坐標(biāo)分別是A(0,0,0),B(,0,0),

          C(,1,0),D(0,1,0),S(0,0,1),

             ∴ M(,1,0),N(,,).                                  2分

             ∴ (0,,),,0,0),,).    4分

             ∴ .∴ ,

             ∴ MN ⊥平面ABN.                                                      6分

             (Ⅱ)設(shè)平面NBC的法向量為,),則.且又易知 ,

             ∴   即    ∴

             令,則,0,).                                           9分

             顯然,(0,)就是平面ABN的法向量.

             ∴ 二面角的余弦值是.                                    12分

          (19)(本小題滿分12分)

          解:(Ⅰ)由題意得

           

          );                             3分

          同理可得);

          ).                           5分

          (Ⅱ)       8分

          (Ⅲ)由上問知 ,即是關(guān)于的三次函數(shù),設(shè)

          ,則

          ,解得  或 (不合題意,舍去).

          顯然當(dāng)  時,;當(dāng)  時,

          ∴ 當(dāng)年產(chǎn)量   時,隨機(jī)變量  的期望  取得最大值.              12分

          (20)(本小題滿分12分)

          解:(Ⅰ)設(shè))是函數(shù) 的圖象上任意一點(diǎn),則容易求得點(diǎn)關(guān)于直線  的對稱點(diǎn)為),依題意點(diǎn),)在的圖象上,

          . ∴ .            2分

           的一個極值點(diǎn),∴ ,解得

          ∴ 函數(shù)  的表達(dá)式是 ).            4分

          ∵ 函數(shù)  的定義域?yàn)椋?sub>), ∴  只有一個極值點(diǎn),且顯然當(dāng)

          時,;當(dāng)時,

          ∴ 函數(shù)  的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.           6分

          (Ⅱ)由

          ,∴      9分

           在 時恒成立.

          ∴ 只需求出  在   時的最大值和  在

           時的最小值,即可求得  的取值范圍.

          (當(dāng)  時);

          (當(dāng)  時).

          ∴   的取值范圍是 .                                         12分

           

          (21)(本小題滿分12分)

          解:(Ⅰ)∵ ,

          設(shè)O關(guān)于直線

          對稱點(diǎn)為的橫坐標(biāo)為

          又易知直線  解得線段的中點(diǎn)坐標(biāo)

          為(1,-3).∴

          ∴ 橢圓方程為 .                                           5分

          (Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

          設(shè)點(diǎn),,則

          由韋達(dá)定理得 ,.                       8分

          ∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)的橫坐標(biāo)

          ,代入,并整理得 .   10分

          再將韋達(dá)定理的結(jié)果代入,并整理可得

          ∴ 直線ME與軸相交于定點(diǎn)(,0).                                  12分

          (22)(本小題滿分14分)

          證明:(Ⅰ)∵ ,,且 ,N?),

          ∴  .                                                            2分

          去分母,并整理得 .                      5分

          ,,……,

          將這個同向不等式相加,得 ,∴ .    7分

          (Ⅱ)∵ ,∴ .                     9分

          .即 .                        11分

          ,即

          .                                                14分

           

           


          同步練習(xí)冊答案