日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又∵平面BDE. 平面BDE.∴AM∥平面BDF. 查看更多

           

          題目列表(包括答案和解析)

          21、如圖所示,在斜邊為AB的Rt△ABC中,過A作PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.
          (1)求證:BC⊥面PAC;
          (2)求證:PB⊥面AMN.

          查看答案和解析>>

          在直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M,N分別是A1B1,AB 的中點(diǎn),給出如下三個(gè)結(jié)論:
          ①C1M⊥平面A1ABB1
          ②A1B⊥AM
          ③平面AMC1∥平面CNB1,其中正確結(jié)論為
          ①②③
          ①②③
          (填序號)

          查看答案和解析>>

          如圖所示,在斜邊為AB的Rt△ABC中,過A作PA⊥平面ABC,AM⊥PB于M,
          AN⊥PC于N.(Ⅰ)求證:BC⊥面PAC;
          (Ⅱ)求證:PB⊥面AMN.
          (Ⅲ)若PA=AB=4,設(shè)∠BPC=θ,試用tanθ表示△AMN 的面積,當(dāng)tanθ取何值時(shí),△AMN的面積最大?最大面積是多少?

          查看答案和解析>>

          20、直角三角形ABC中∠C=90°,PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.
          求證:①BC⊥平面PAC;
          ②PB⊥平面AMN.

          查看答案和解析>>

          如圖所示的長方體中,底面是邊長為的正方形,的交點(diǎn),,是線段的中點(diǎn).

          (Ⅰ)求證:平面

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大。

          【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,又,∴平面. 可得證明

          (3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,,

          為平面的法向量.∴利用法向量的夾角公式,,

          的夾角為,即二面角的大小為

          方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn),

          ,又點(diǎn),,∴

          ,且不共線,∴

          平面平面,∴平面.…………………4分

          (Ⅱ)∵,

          ,,即,,

          ,∴平面.   ………8分

          (Ⅲ)∵,,∴平面,

          為面的法向量.∵,

          為平面的法向量.∴,

          的夾角為,即二面角的大小為

           

          查看答案和解析>>


          同步練習(xí)冊答案