日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 是等比數(shù)列..得 --4分 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列{an}的首項為a1=2,前n項和為Sn,且對任意的n∈N*n,≥2,an總是3Sn-4與2-
          5
          2
          Sn-1
          的等差中項.
          (1)求證:數(shù)列{an}是等比數(shù)列,并求通項an;
          (2)證明:
          1
          2
          (log2Sn+log2Sn+2)<log2Sn+1
          ;
          (3)若bn=
          4
          an
          -1,cn=log2(
          4
          an
          )2
          ,Tn,Rn分別為{bn}、{cn}的前n項和.問:是否存在正整數(shù)n,使得Tn>Rn,若存在,請求出所有n的值,否則請說明理由.

          查看答案和解析>>

          已知等差數(shù)列{an}的首項為4,公差為4,其前n項和為Sn,則數(shù)列 {}的前n項和為( 。

           

          A.

          B.

          C.

          D.

          考點:

          數(shù)列的求和;等差數(shù)列的性質(zhì).

          專題:

          等差數(shù)列與等比數(shù)列.

          分析:

          利用等差數(shù)列的前n項和即可得出Sn,再利用“裂項求和”即可得出數(shù)列 {}的前n項和.

          解答:

          解:∵Sn=4n+=2n2+2n,

          ∴數(shù)列 {}的前n項和===

          故選A.

          點評:

          熟練掌握等差數(shù)列的前n項和公式、“裂項求和”是解題的關(guān)鍵.

          查看答案和解析>>

          已知數(shù)列中,,數(shù)列中,,且點在直線上。

          (1)求數(shù)列的通項公式;

          (2)求數(shù)列的前項和

          (3)若,求數(shù)列的前項和

          【解析】第一問中利用數(shù)列的遞推關(guān)系式

          ,因此得到數(shù)列的通項公式;

          第二問中, 即為:

          即數(shù)列是以的等差數(shù)列

          得到其前n項和。

          第三問中, 又   

          ,利用錯位相減法得到。

          解:(1)

            即數(shù)列是以為首項,2為公比的等比數(shù)列

                            ……4分

          (2) 即為:

          即數(shù)列是以的等差數(shù)列

                   ……8分

          (3) 又   

             ①         ②

          ①-  ②得到

            

           

          查看答案和解析>>

          已知某數(shù)列的前三項分別是下表第一、二、三行中的某一個數(shù),且前三項中任何兩個數(shù)不在下表的同一列.
          第一列 第二列 第三列
          第一行 3 2 10
          第二行 14 4 6
          第三行 18 9 8
          若此數(shù)列是等差數(shù)列,記作{an},若此數(shù)列是等比數(shù)列,記作{bn}.
          (I)求數(shù)列{an}和數(shù)列{bn}的通項公式;
          (II)將數(shù)列{an}的項和數(shù)列{bn}的項依次從小到大排列得到數(shù)列{cn},數(shù)列{cn}的前n項和為Sn,試求最大的自然數(shù)M,使得當(dāng)n≤M時,都有Sn≤2012.
          (Ⅲ)若對任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求實數(shù)λ的取值范圍.

          查看答案和解析>>

          第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分8分.

          如果存在常數(shù)使得數(shù)列滿足:若是數(shù)列中的一項,則也是數(shù)列中的一項,稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.

          (1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求的值;

          (2)已知有窮等差數(shù)列的項數(shù)是,所有項之和是,求證:數(shù)列是“兌換數(shù)列”,并用表示它的“兌換系數(shù)”;

          (3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.

           

          查看答案和解析>>


          同步練習(xí)冊答案