日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. h(x).所以g(x)=[f(x)-f(-x)]=lg=lg10x=.應(yīng)選C.評(píng)述:本題考查了奇偶函數(shù).對(duì)數(shù)函數(shù)的概念和性質(zhì).要求有較強(qiáng)的運(yùn)算能力.本題背景新穎.對(duì)分析問題和解決問題的能力有較高要求. 查看更多

           

          題目列表(包括答案和解析)

          已知

          (1)求的單調(diào)區(qū)間;

          (2)證明:當(dāng)時(shí),恒成立;

          (3)任取兩個(gè)不相等的正數(shù),且,若存在使成立,證明:

          【解析】(1)g(x)=lnx+,=        (1’)

          當(dāng)k0時(shí),>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無(wú)減區(qū)間;

          當(dāng)k>0時(shí),>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

          (2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),的變化情況如表

          x

          1

          (1,e)

          e

          (e,+)

           

          0

          +

          h(x)

          e-2

          0

          所以h(x)0, ∴f(x)2x-e                    (5’)

          設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時(shí),=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時(shí), 2x-ef(x)恒成立.

          (3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

          ∴l(xiāng)nx0 –lnx>0, ∴x0 >x

           

          查看答案和解析>>

          若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x)且x∈[-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=
          lgx(x>0)
          -
          1
          x
          (x<0)
          ,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)零點(diǎn)的個(gè)數(shù)有
          8
          8
           個(gè).

          查看答案和解析>>

          設(shè)函數(shù)f(x)=alnx,g(x)=
          12
          x2
          (1)記h(x)=f(x)-g(x),若a=4,求h(x)的單調(diào)遞增區(qū)間;
          (2)記g'(x)為g(x)的導(dǎo)函數(shù),若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求實(shí)數(shù)a的取值范圍;
          (3)若a=1,對(duì)任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

          查看答案和解析>>

          (2012•瀘州模擬)函數(shù)f(x)=
          12
          x2+2ax
          與函數(shù)g(x)=3a2lnx+b.
          (I)設(shè)曲線y=f(x)與曲線y=g(x)在公共點(diǎn)處的切線相同,且f(x)在x=-2e(e是自然對(duì)數(shù)的底數(shù))時(shí)取得極值,求a、b的值;
          (II)若函數(shù)g(x)的圖象過(guò)點(diǎn)(1,0)且函數(shù)h(x)=f(x)+g(x)-(2a+6)x在(0,4)上為單調(diào)函數(shù),求a的取值范圍.

          查看答案和解析>>

          (2013•淄博一模)已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x).
          (Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
          (Ⅱ)當(dāng)a<0時(shí),求f(x)的單調(diào)區(qū)間;
          (Ⅲ)當(dāng)-3<a<-2時(shí),若存在λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|>(m+ln3)a-2ln3成立,求m的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案