日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)a>時(shí).函數(shù)f(x)的最小值是a+.評(píng)述:函數(shù)奇偶性的討論問(wèn)題是中學(xué)數(shù)學(xué)的基本問(wèn)題.如果平時(shí)注意知識(shí)的積累.對(duì)解此題會(huì)有較大幫助.因?yàn)閤∈R.f(0)=|a|+1≠0.由此排除f(x)是奇函數(shù)的可能性.運(yùn)用偶函數(shù)的定義分析可知.當(dāng)a=0時(shí).f(x)是偶函數(shù).第2題主要考查學(xué)生的分類討論思想.對(duì)稱思想. 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)f(x)的定義域是R,對(duì)任意實(shí)數(shù)a,b都有f(a)+f(b)=f(a+b).當(dāng)x>0時(shí),f(x)>0且f(2)=3.
          (1)判斷的奇偶性、單調(diào)性;
          (2)求在區(qū)間[-2,4]上的最大值、最小值;
          (3)當(dāng)θ∈[0,
          π2
          ]
          時(shí),f(cos2θ-3)+f(4m-2mcosθ)>0對(duì)所有θ都成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          函數(shù)f(x)的定義域是R,對(duì)任意實(shí)數(shù)a,b都有f(a)+f(b)=f(a+b).當(dāng)x>0時(shí),f(x)>0且f(2)=3.
          (1)判斷的奇偶性、單調(diào)性;
          (2)求在區(qū)間[-2,4]上的最大值、最小值;
          (3)當(dāng)數(shù)學(xué)公式時(shí),f(cos2θ-3)+f(4m-2mcosθ)>0對(duì)所有θ都成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)在一個(gè)周期內(nèi),當(dāng)x=
          π
          6
          時(shí),y取最小值-3;當(dāng)x=
          3
          時(shí),y最大值3.
          (I)求f(x)的解析式; 
          (II)求f(x)在區(qū)間[
          π
          2
          ,π]
          上的最值.

          查看答案和解析>>

          已知a>0,函數(shù)f(x)=x|x-a|+1(x∈R).
          (1)當(dāng)a=1時(shí),求所有使f(x)=x成立的x的值;
          (2)當(dāng)a∈(0,3)時(shí),求函數(shù)y=f(x)在閉區(qū)間[1,2]上的最小值;
          (3)試討論函數(shù)y=f(x)的圖象與直線y=a的交點(diǎn)個(gè)數(shù).

          查看答案和解析>>

          設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=
          1f(-2-an)
          (n∈N*
          (Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
          (Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案