日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由已知.f(x)有最大值3.所以lga<0.并且+4lga=3. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=
          a2x+1
          3x-1
          (a∈N)
          ,方程f(x)=-2x+7有兩個(gè)根x1,x2,且x1<1<x2<3.
          (1)求自然數(shù)a的值及f(x)的解析式;
          (2)記等差數(shù)列{an}和等差數(shù)列{bn}的前n項(xiàng)和分別為Sn和Tn,且
          Sn
          Tn
          =f(n),(n∈N*)
          ,設(shè)g(n)=
          an
          bn
          ,求g(n)的解析式及g(n)的最大值;
          (3)在(2)小題的條件下,若a1=10,寫出數(shù)列{an}和{bn}的通項(xiàng),并探究在數(shù)列{an}和{bn}中是否存在相等的項(xiàng)?若有,求這些相等項(xiàng)從小到大排列所成數(shù)列{cn}的通項(xiàng)公式;若沒有,請(qǐng)說明理由.

          查看答案和解析>>

          已知函數(shù)y=x+
          a
          x
          有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
          a
          ]上是減函數(shù),在[
          a
          ,+∞)上是增函數(shù).
          (1)如果函數(shù)y=x+
          2b
          x
          (x>0)的值域?yàn)閇6,+∞),求b的值;
          (2)研究函數(shù)y=x2+
          c
          x2
          (常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
          (3)對(duì)函數(shù)y=x+
          a
          x
          和y=x2+
          a
          x2
          (常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
          1
          x
          )n
          +(
          1
          x2
          +x)n
          (n是正整數(shù))在區(qū)間[
          1
          2
          ,2]上的最大值和最小值(可利用你的研究結(jié)論).

          查看答案和解析>>

          已知函數(shù)f(x)=x2+3x|x-a|,其中a∈R.
          (1)當(dāng)a=
          1
          3
          時(shí),方程f(x)=b恰有三個(gè)根,求實(shí)數(shù)b的取值范圍;
          (2)當(dāng)a=
          1
          3
          時(shí),是否存在區(qū)間[m,n],使得函數(shù)的定義域與值域均為[m,n],若存在請(qǐng)求出所有可能的區(qū)間[m,n],若不存在請(qǐng)說明理由;
          (3)若a>0,函數(shù)f(x)在區(qū)間(m,n)上既有最大值又有最小值,請(qǐng)分別求出m,n的取值范圍(用a表示).

          查看答案和解析>>

          (2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請(qǐng)先閱讀下列材料,然后回答問題.
          材料:已知函數(shù)g(x)=-
          1
          f(x)
          ,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個(gè)同學(xué)給出了如下解答:
          解:令u=-f(x)=-x2-x,則u=-(x+
          1
          2
          2+
          1
          4
          ,
          當(dāng)x=-
          1
          2
          時(shí),u有最大值,umax=
          1
          4
          ,顯然u沒有最小值,
          ∴當(dāng)x=-
          1
          2
          時(shí),g(x)有最小值4,沒有最大值.
          請(qǐng)回答:上述解答是否正確?若不正確,請(qǐng)給出正確的解答;
          (3)設(shè)an=
          f(n)
          2n-1
          ,請(qǐng)?zhí)岢龃藛栴}的一個(gè)結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
          注意:第(3)題中所提問題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時(shí)提出兩個(gè)問題,則就高不就低,解答也相同處理.

          查看答案和解析>>

          定義數(shù)列中的前n項(xiàng)的積為數(shù)列的n項(xiàng)階乘,記為,例如:(a3n+1)!!=a4•a7•a10•…•a3n+1,已知f(x)=x-sinx在[0,n]上的最大值為bn;設(shè)an=bn+sin n.
          (1)求an
          (2)求證:
          (3)是否存在m∈N*使成立?若存在,求出所有的m的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案