日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求的長, 查看更多

           

          題目列表(包括答案和解析)

          (Ⅰ)求經(jīng)過點(diǎn)(-
          3
          2
          ,
          5
          2
          ),且與橢圓9x2+5y2=45有共同焦點(diǎn)的橢圓方程;
          (Ⅱ)已知橢圓以坐標(biāo)軸為對(duì)稱軸,且長軸長是短軸長的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程.

          查看答案和解析>>

          (Ⅰ)求經(jīng)過點(diǎn)(-
          3
          2
          5
          2
          ),且與橢圓9x2+5y2=45有共同焦點(diǎn)的橢圓方程;
          (Ⅱ)已知橢圓以坐標(biāo)軸為對(duì)稱軸,且長軸長是短軸長的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程.

          查看答案和解析>>

          (Ⅰ)如圖1,A,B,C是平面內(nèi)的三個(gè)點(diǎn),且A與B不重合,P是平面內(nèi)任意一點(diǎn),若點(diǎn)C在直線AB上,試證明:存在實(shí)數(shù)λ,使得:
          PC
          PA
          +(1-λ)
          PB

          (Ⅱ)如圖2,設(shè)G為△ABC的重心,PQ過G點(diǎn)且與AB、AC(或其延長線)分別交于P,Q點(diǎn),若
          AP
          =m
          AB
          AQ
          =n
          AC
          ,試探究:
          1
          m
          +
          1
          n
          的值是否為定值,若為定值,求出這個(gè)定值;若不是定值,請(qǐng)說明理由.

          查看答案和解析>>

          ()選修4-1:幾何證明講

          已知 ABC   中,AB=AC,  DABC外接圓劣弧上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至E。

          (1)       求證:AD的延長線平分CDE;

          (2)       若BAC=30,ABC中BC邊上的高為2+,求ABC外接圓的面積。

          查看答案和解析>>

          ()(本小題滿分12分)

          已知橢圓(a>b>0)的離心率為,以原點(diǎn)為圓心。橢圓短半軸長半徑的

          圓與直線y=x+2相切,

          (1)求a與b;

          (2)設(shè)該橢圓的左,右焦點(diǎn)分別為,直線且與x軸垂直,動(dòng)直線與y軸垂直,與點(diǎn)p..求線段P垂直平分線與的交點(diǎn)M的軌跡方程,并指明曲線類型。

          查看答案和解析>>

          一、選擇題(每小題5分,共60分)

          1.A   2.A   3.B   4.D   5.C   6.C   7.B   8.B   9.B   10.D   11.C    12.D

           

          二、填空題(每小題5分,共20分)

          13.2     14.    15.    16.③④

           

          三、解答題(共70分)

          17. (本小題滿分10分)

          解:(Ⅰ)由  可得:

               又     ;        ………………………… 5分

          (Ⅱ),

              

          .                               ………………………………………… 10分

           

           

          18.(本小題滿分12分)

          解:(Ⅰ)設(shè)A隊(duì)得分為2分的事件為,

            ………… 4分

          (Ⅱ)的可能取值為3 , 2 , 1 , 0 ;   

          ,    ,    , ,  

          0

          1

          2

          3

          的分布列為:                          

                                 

                                                                                                                      

          ………… 8分

                于是 , ……………… 9分

          ,    ∴     ……………………… 11分

          由于, 故B隊(duì)比A隊(duì)實(shí)力較強(qiáng).    ……………………… 12分

           

          19.(本小題滿分12分)

          解法一

          (Ⅰ)連結(jié),

               ∵平面,平面∩平面

          又∵的中點(diǎn)

          的中點(diǎn)

              ∵

          ,

          是二面角的平面角.

              在直角三角形中,   ………… 6分

          (Ⅱ)解:過,垂足為,連結(jié),

          是三角形的中位線,

          ,又

               ∴平面

          在平面上的射影,

          又∵,由三垂線定理逆定理,得

          為二面角的平面角

          ,

          在直角三角形中,

             

              ∴二面角的大小為.      ……………… 12分

           

          解法二:

          (Ⅰ)建立如圖所示空間坐標(biāo)系,則,

          ,

          平面的法向量為

          ,

          平面 ,.

          所以點(diǎn)是棱的中點(diǎn).

          平面的法向量,,

          (Ⅱ)設(shè)平面的法向量為,平面的法向量

          ,,

          ∵二面角為銳角

          ∴二面角的大小為

           

           

           

          20.(本小題滿分12分)

          解:(Ⅰ)的定義域?yàn)?sub>.

          ,令得:

          所以內(nèi)為增函數(shù),在內(nèi)為減函數(shù).     ……………… 6分

            (Ⅱ)由題意得:,

          為遞增函數(shù),;

          為遞增函數(shù),

          的取值范圍為.                                  ……………… 12分

           

          21. (本小題滿分12分)

          解:(Ⅰ)過點(diǎn)垂直直線于點(diǎn)

          依題意得:,

          所以動(dòng)點(diǎn)的軌跡為是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,

          即曲線的方程是                                ………………………4分

          (Ⅱ)設(shè)、 ,  ,則

          知,, ∴,

          又∵切線AQ的方程為:,注意到

          切線AQ的方程可化為:;

          在切線AQ上, ∴    

          于是在直線

          同理,由切線BQ的方程可得:   

          于是在直線

          所以,直線AB的方程為:,

          又把代入上式得:

          ∴直線AB的方程為:

          ∴直線AB必過定點(diǎn).              ………………………12分

          (Ⅱ)解法二:設(shè),切點(diǎn)的坐標(biāo)為,則

          知,,得切線方程:

          即為:,又∵在切線上,

          所以可得:,又把代入上式得:

          ,解之得:

          ,

          故直線AB的方程為:

          化簡(jiǎn)得:

          ∴直線AB的方程為:

          ∴直線AB必過定點(diǎn).

           

          22.(本小題滿分12分)

          解:(Ⅰ)由

                  得:

          ①-②得,

          即有,

          數(shù)列是從第二項(xiàng)為,公比為的等比數(shù)列

            即, ……………………5分

          滿足該式, .  ……………………6分

          (Ⅱ)  ,   要使恒成立

          恒成立

          當(dāng)為奇數(shù)時(shí),恒成立,而的最小值為   

                                       ………………………………………………10分

          當(dāng)為偶數(shù)時(shí),恒成立,而的最大值為 

          所以,存在,使得對(duì)任意都有.  ……………………………………12分

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案