日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19.解:(1)由條件得------4分 查看更多

           

          題目列表(包括答案和解析)

          解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

          解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


           13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

          若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

          (2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

          數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

          查看答案和解析>>

          把真命題“p⇒q”理解為:
          ①由p經(jīng)過推理可得到q;
          ②如果p成立,那么q也成立;
          ③如果q不成立,那么p也不成立;
          ④p是q的充分條件,q是p的必要條件.
          上述理解正確的個(gè)數(shù)是( 。

          查看答案和解析>>

          把真命題“p?q”理解為:
          ①由p經(jīng)過推理可得到q;
          ②如果p成立,那么q也成立;
          ③如果q不成立,那么p也不成立;
          ④p是q的充分條件,q是p的必要條件.
          上述理解正確的個(gè)數(shù)是( 。
          A.1個(gè)B.2個(gè)C.3  個(gè)D.4個(gè)

          查看答案和解析>>

          把真命題“p⇒q”理解為:
          ①由p經(jīng)過推理可得到q;
          ②如果p成立,那么q也成立;
          ③如果q不成立,那么p也不成立;
          ④p是q的充分條件,q是p的必要條件.
          上述理解正確的個(gè)數(shù)是( )
          A.1個(gè)
          B.2個(gè)
          C.3  個(gè)
          D.4個(gè)

          查看答案和解析>>

          已知點(diǎn)),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).

          (Ⅰ)若,求的值;

          (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

          (Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

          求圓面積的最小值.

          【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

          中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

          (3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

          (Ⅰ)由可得,.  ------1分

          ∵直線與曲線相切,且過點(diǎn),∴,即,

          ,或, --------------------3分

          同理可得:,或----------------4分

          ,∴. -----------------5分

          (Ⅱ)由(Ⅰ)知,,,則的斜率,

          ∴直線的方程為:,又,

          ,即. -----------------7分

          ∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

          故圓的面積為. --------------------9分

          (Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

          當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

          故圓面積的最小值

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案