題目列表(包括答案和解析)
如圖,某地為了開(kāi)發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)和居民區(qū)
的公路,點(diǎn)
所在的山坡面與山腳所在水平面
所成的二面角為
(
),且
,點(diǎn)
到平面
的距離
(km).沿山腳原有一段筆直的公路
可供利用.從點(diǎn)
到山腳修路的造價(jià)為
萬(wàn)元/km,原有公路改建費(fèi)用為
萬(wàn)元/km.當(dāng)山坡上公路長(zhǎng)度為
km(
)時(shí),其造價(jià)為
萬(wàn)元.已知
,
,
,
.
(I)在上求一點(diǎn)
,使沿折線
修建公路的總造價(jià)最;
(II) 對(duì)于(I)中得到的點(diǎn),在
上求一點(diǎn)
,使沿折線
修建公路的總造價(jià)最。
(III)在上是否存在兩個(gè)不同的點(diǎn)
,
,使沿折線
修建公路的總造價(jià)小于(II)中得到的最小總造價(jià),證明你的結(jié)論.
(I)在上求一點(diǎn)
,使沿折線
修建公路的總造價(jià)最。
(II) 對(duì)于(I)中得到的點(diǎn),在
上求一點(diǎn)
,使沿折線
修建公路的總造價(jià)最小.
(III)在上是否存在兩個(gè)不同的點(diǎn)
、
,使沿折線
修建公路的總造價(jià)小于(II)中得到的最小總造價(jià),證明你的結(jié)論.
圖4
(本小題滿分13分)
已知,在水平平面上有一長(zhǎng)方體
繞
旋轉(zhuǎn)
得到如圖所示的幾何體.
(Ⅰ)證明:平面平面
;
(Ⅱ)當(dāng)時(shí),直線
與平面
所成的角的正弦值為
,求
的長(zhǎng)度;
(Ⅲ)在(Ⅱ)條件下,設(shè)旋轉(zhuǎn)過(guò)程中,平面與平面
所成的角為
,
長(zhǎng)方體
的最高點(diǎn)離平面
的距離為
,請(qǐng)直接寫出
的一個(gè)表達(dá)式,并注明定義域.
(本小題滿分13分)
已知,在水平平面上有一長(zhǎng)方體
繞
旋轉(zhuǎn)
得到如圖所示的幾何體.
(Ⅰ)證明:平面平面
;
(Ⅱ)當(dāng)時(shí),直線
與平面
所成的角的正弦值為
,求
的長(zhǎng)度;
(Ⅲ)在(Ⅱ)條件下,設(shè)旋轉(zhuǎn)過(guò)程中,平面與平面
所成的角為
,長(zhǎng)方體
的最高點(diǎn)離平面
的距離為
,請(qǐng)直接寫出
的一個(gè)表達(dá)式,并注明定義域.
(本小題滿分13分)
已知,在水平平面上有一長(zhǎng)方體
繞
旋轉(zhuǎn)
得到如圖所示的幾何體.
(Ⅰ)證明:平面平面
;
(Ⅱ)當(dāng)時(shí),直線
與平面
所成的角的正弦值為
,求
的長(zhǎng)度;
(Ⅲ)在(Ⅱ)條件下,設(shè)旋轉(zhuǎn)過(guò)程中,平面與平面
所成的角為
,長(zhǎng)方體
的最高點(diǎn)離平面
的距離為
,請(qǐng)直接寫出
的一個(gè)表達(dá)式,并注明定義域.
一、DDBCD CABCA
二、11.1;
12.; 13.
14.
; 15.
;
16.
三.解答題(本大題共6小題,共76分)
17.解:(1)法一:由題可得;
法二:由題,
故,從而
;
法三:由題,解得
,
故,從而
。
(2),令
,
則,
在
單調(diào)遞減,
故,
從而的值域?yàn)?sub>
。
18.解:(1)的可能取值為0,1,2,3,4,
,
,
,
,
。
因此隨機(jī)變量的分布列為下表所示;
0
1
2
3
4
(2)由⑴得:,
19.法一:(1)連接,設(shè)
,則
。
因?yàn)?sub>,所以
,故
,從而
,
故。
又因?yàn)?sub>,
所以,當(dāng)且僅當(dāng)
取等號(hào)。
此時(shí)為
邊的中點(diǎn),
為
邊的中點(diǎn)。
故當(dāng)為
邊的中點(diǎn)時(shí),
的長(zhǎng)度最小,其值為
(2)連接,因?yàn)榇藭r(shí)
分別為
的中點(diǎn),
故,所以
均為直角三角形,
從而,所以
即為直線
與平面
所成的角。
因?yàn)?sub>,所以
即為所求;
(3)因,又
,所以
。
又,故三棱錐
的表面積為
。
因?yàn)槿忮F的體積
,
所以。
法二:(1)因,故
。
設(shè),則
。
所以,
當(dāng)且僅當(dāng)取等號(hào)。此時(shí)
為
邊的中點(diǎn)。
故當(dāng)為
的中點(diǎn)時(shí),
的長(zhǎng)度最小,其值為
;
(2)因,又
,所以
。
記點(diǎn)到平面
的距離為
,
因,故
,解得
。
因
,故
;
(3)同“法一”。
法三:(1)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)
,則
,
所以,當(dāng)且僅當(dāng)
取等號(hào)。
此時(shí)為
邊的中點(diǎn),
為
邊的中點(diǎn)。
故當(dāng)為
邊的中點(diǎn)時(shí),
的長(zhǎng)度最小,其值為
;
(2)設(shè)為面
的法向量,因
,
故。取
,得
。
又因,故
。
因此,從而
,
所以;
(3)由題意可設(shè)為三棱錐
的內(nèi)切球球心,
則,可得
。
與(2)同法可得平面的一個(gè)法向量
,
又,故
,
解得。顯然
,故
。
20.解:(1)當(dāng)時(shí),
。令
得
,
故當(dāng) 時(shí)
,
單調(diào)遞增;
當(dāng)時(shí)
,
單調(diào)遞減。
所以函數(shù)的單調(diào)遞增區(qū)間為
,
單調(diào)遞減區(qū)間為;
(2)法一:因,故
。
令,
要使對(duì)滿足
的一切
成立,則
,
解得;
法二:,故
。
由可解得
。
因?yàn)?sub>在
單調(diào)遞減,因此
在
單調(diào)遞增,故
。設(shè)
,
則,因?yàn)?sub>
,
所以,從而
在
單調(diào)遞減,
故。因此
,即
。
(3)因?yàn)?sub>,所以
即對(duì)一切
恒成立。
,令
,
則。因?yàn)?sub>
,所以
,
故在
單調(diào)遞增,有
。
因此,從而
。
所以。
21.解:(1)設(shè),則由題
,
由得
,故
。
又根據(jù)可得
,
即,代入可得
,
解得(舍負(fù))。故
的方程為
;
(2)法一:設(shè),代入
得
,
故,
從而
因此。
法二:顯然點(diǎn)是拋物線
的焦點(diǎn),點(diǎn)
是其準(zhǔn)線
上一點(diǎn)。
設(shè)為
的中點(diǎn),過(guò)
分別作
的垂線,垂足分別為
,
則。
因此以為直徑的圓與準(zhǔn)線
相切(于點(diǎn)
)。
若與
重合,則
。否則點(diǎn)
在
外,因此
。
綜上知。
22.證明:(1)因,故
。
顯然,因此數(shù)列
是以
為首項(xiàng),以2為公比的等比數(shù)列;
(2)由⑴知,解得
;
(3)因?yàn)?/p>
所以。
又(當(dāng)且僅當(dāng)
時(shí)取等號(hào)),
故。
綜上可得。(亦可用數(shù)學(xué)歸納法)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com