日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 12.求和:Sn=+++-+. 解:(1)a=1時.Sn=1+2+-+n=. (2)a≠1時.Sn=+++-+① Sn=++-++② 由①-②得 (1-)Sn=+++-+- =-. ∴Sn=. 綜上所述.Sn=. 查看更多

           

          題目列表(包括答案和解析)

          已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:

          ①不等式f(x)≤0的解集有且只有一個元素;

          ②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.

          設(shè)數(shù)列{an}的前項(xiàng)和Sn=f(n)

          (1)求f(x)表達(dá)式.

          (2)求數(shù)列{an}的通項(xiàng)公式.

          (3)設(shè)bn,cn,{cn}的前n項(xiàng)和為Tn,Tn>n+m對n∈N*,n≥2恒成立,求m的范圍.

          查看答案和解析>>

          已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:①不等式f(x)≤0的解集有且只有一個元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).

          (1)求f(x)表達(dá)式;

          (2)求數(shù)列{an}的通項(xiàng)公式;

          (3)設(shè),,{cn}前n項(xiàng)和為Tn,Tn>n+m對(n∈N*,n≥2)恒成立,求m范圍

          查看答案和解析>>

          已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:

          ①不等式f(x)≤0的解集有且只有一個元素;

          ②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立,設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).

          (Ⅰ)求函數(shù)f(x)的表達(dá)式;

          (Ⅱ)求數(shù)列{an}的通項(xiàng)公式;

          (Ⅲ)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足ci·ci+1<0的整數(shù)i的個數(shù)稱為這個數(shù)列{cn}的變號數(shù),令(n∈N*),求數(shù)列{cn}的變號數(shù).

          查看答案和解析>>

          已知二次函數(shù)f(x)=x2axa(x∈R)同時滿足:(1)不等式f(x)≤0的解集有且只有一個元素;(2)在定義域內(nèi)存在0≤x1x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Snf(n).

          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

          (Ⅱ)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和;

          (Ⅲ)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足ci·ci+1<0的正整數(shù)i的個數(shù)稱為這個數(shù)列{cn}的變號數(shù).另(n為正整數(shù)),求數(shù)列{cn}的變號數(shù).

          查看答案和解析>>

          已知定義在R上的函數(shù)f(x),滿足條件:(1)f(x)+f(-x)=2;(2)對非零實(shí)數(shù)x,都有2f(x)+f()=2x++3.

          (1)求函數(shù)f(x)的解析式;

          (2)設(shè)函數(shù)直線分別與函數(shù)g(x)的反函數(shù)y=g-1(x)交于A,B兩點(diǎn)(其中n∈N*),設(shè)an=|AnBn|,sn為數(shù)列an的前n項(xiàng)和.求證:當(dāng)n≥2時,總有成立.

          查看答案和解析>>


          同步練習(xí)冊答案