日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
           

          B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
          PB
          PA
          =
          1
          2
          ,
          PC
          PD
          =
          1
          3
          ,則
          BC
          AD
          的值為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
          x=3+2
          2
          cosθ
          y=-1+2
          2
          sinθ
          (θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
          2
          cosθ-sinθ
          ,則曲線C上到直線l距離為
          2
          的點(diǎn)的個(gè)數(shù)為:
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)
          函數(shù)f(x)=x2-x-a2+a+1對(duì)于任一實(shí)數(shù)x,均有f(x)≥0.則實(shí)數(shù)a滿足的條件是
           

          B.(幾何證明選做題)
          如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
          3
          ,AB=BC=4,則AC的長(zhǎng)為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)
          在極坐標(biāo)系中,曲線ρ=4cos(θ-
          π
          3
          )
          上任意兩點(diǎn)間的距離的最大值為
           

          查看答案和解析>>

          精英家教網(wǎng)A.不等式
          x-2
          x2+3x+2
          >0
          的解集是
           

          B.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn),過(guò)P作⊙O的切線,切點(diǎn)為CPC=2
          3
          ,若∠CAP=30°,則⊙O的直徑AB=
           

          C.(極坐標(biāo)系與參數(shù)方程選做題)若圓C:
          x=1+
          2
          cosθ
          y=2+
          2
          sinθ
          (θ為參數(shù))
          與直線x-y+m=0相切,則m=
           

          查看答案和解析>>

          精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
           


          B.(幾何證明選做題)如圖,直線PC與圓O相切于點(diǎn)C,割線PAB經(jīng)過(guò)圓心O,
          弦CD⊥AB于點(diǎn)E,PC=4,PB=8,則CE=
           

          C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
          π
          4
          )=2
          2
          的距離為
           

          查看答案和解析>>

          一.選擇題:CDDA  DDBA  BBDC .

          二.填空題:(13)60,(14),(15),(16)①②④ .

          三.解答題:

          (17)解:(Ⅰ)∵

          .                 ………3分

          ∴令,        ………4分

          的遞減區(qū)間是;              ………5分

          ,           ………6分

          的遞增區(qū)間是.              ………7分

          (Ⅱ)∵,∴,                     ………8分

                又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線

          可得.                                     ………10分

          (18)解:由題意,                                       ………1分

          ,                                        ………2分

          ,                              ………4分

          ,                            ………6分

          ,                      ………8分

           

           

          文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

           

           

           

          ………9分

          .          ………12分

          (19)解:(Ⅰ)由題設(shè)可知,.                    ………1分

          ,                                 ………3分

          ,              ………5分

          .                                             ………6分

          (Ⅱ)設(shè).                        ………7分

          顯然,時(shí),,                                       ………8分

          , ∴當(dāng)時(shí),,∴,                       

          當(dāng)時(shí),,∴,                             ………9分

          當(dāng)時(shí),,∴,                        ………10分

          當(dāng)時(shí),恒成立,

          恒成立,                               ………11分

          ∴存在,使得.                                 ………12分

          (20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

          設(shè)AB=1,則AC=,CD=2.                                     ………2分

          設(shè)F是AC與BD的交點(diǎn),∵ABCD為梯形,

          ∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

          又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

          又EF在平面ACE內(nèi),∴PD∥平面ACE.                             ………6分

          (Ⅱ)以A為坐標(biāo)原點(diǎn),AB為y軸,AP為z軸建立空間直角坐標(biāo)系,如圖.

          設(shè)AB=1,則,,             ………7分

          ,,     ………8分

          設(shè),∵,∴,  …9分

          設(shè),∵,,∴, …10分

          ,      ………11分

          ∴二面角A-EC-P的大小為.………12分

          注:學(xué)生使用其它解法應(yīng)同步給分.

           

           

          (21)解:(Ⅰ)設(shè)所求的橢圓E的方程為,                ………1分

          、,將代入橢圓得,     ………2分

          ,又,∴ ,                        ………3分

          , ………4分,       ,              ………5分

          ∴所求的橢圓E的方程為.                                ………6分

          (Ⅱ)設(shè)、,則,,          ………7分

          又設(shè)MN的中點(diǎn)為,則以上兩式相減得:,         ………8分

          ,………9分,     ,                  ………10分

          又點(diǎn)在橢圓內(nèi),∴,                               ………11分

          即,,∴.                         ………12分

          注:學(xué)生使用其它解法應(yīng)同步給分.

          (22)解:(Ⅰ)∵,            ……2分

          ,

          時(shí),遞增,時(shí),遞減,時(shí),遞增,

          所以的極大值點(diǎn)為,極小值點(diǎn)為,                     ……4分

          ,,,              ……5分

          的圖像如右圖,供評(píng)卷老師參考)

          所以,的最小值是.                                      ……6分

          (II)由(Ⅰ)知的值域是:

          當(dāng)時(shí),為,當(dāng)時(shí),為.                ……8分                 

          的值域是為,             ……9分

          所以,當(dāng)時(shí),令,并解得,

          當(dāng)時(shí),令,無(wú)解.

          因此,的取值范圍是.                                     ……12分

          注:學(xué)生使用其它解法應(yīng)同步給分.

           

           


          同步練習(xí)冊(cè)答案