日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19.設(shè)函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)

              設(shè)函數(shù).其中向量.

              (Ⅰ)求實(shí)數(shù)的值;

              (Ⅱ)求函數(shù)的最小值.

          查看答案和解析>>

          . (本小題滿分12分)設(shè)函數(shù)為常數(shù),),若,且只有一個(gè)實(shí)數(shù)根.(Ⅰ)求的解析式;(Ⅱ)若數(shù)列滿足關(guān)系式:),又,證明數(shù)列是等差數(shù)列并求的通項(xiàng)公式;

          查看答案和解析>>

          (本小題滿分12分)

          設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3。

          (Ⅰ)求f(x)的解析式:

          (Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對稱圖形,并求其對稱中心;

          (Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。

          查看答案和解析>>

          (本小題滿分12分)  設(shè)函數(shù)

             (I)若函數(shù)處取得極值,求此時(shí)函數(shù)的單調(diào)區(qū)間;

             (II)已知不等式恒成立,求x的取值范圍。

          查看答案和解析>>

          (本小題滿分12分)

          設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3。

          (Ⅰ)求f(x)的解析式:

          (Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對稱圖形,并求其對稱中心;

          (Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。

          查看答案和解析>>

          高考資源網(wǎng)版權(quán)所有

          一、DBCCC  DCADB

          二、11.72  12.  13.  14.  15.

          三、16.(Ⅰ).

          ,∴,∴,∴當(dāng)時(shí),f(A)取最小值.

          (Ⅱ)由(Ⅰ)知, 時(shí), .于是,

          .

          17.(Ⅰ)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,且,

          故取出的4個(gè)球均為黑球的概率為

          (Ⅱ)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件互斥,

          ,

          故取出的4個(gè)球中恰有1個(gè)紅球的概率為

          (Ⅲ)取出的4個(gè)球中紅球的個(gè)數(shù)為0,1,2,3時(shí)的概率分別記為.由(Ⅰ),(Ⅱ)得,.從而

          18.(I)∵AB∥CD,AD=DC=CB=a,∴四邊形ABCD是等腰梯形.設(shè)AC交BD于N,連EN.

          ∵∠ABC=60°,∴∠DCB=∠ADC=120°,∠DAC=∠ACD=30°,

          ∴AC=,AB=2a,=90°.

          又四邊形ACEF是矩形,

          ∴AC⊥平面BCE.∴AC⊥BE.

          (II)∵平面ACEF⊥平面ABCD, EC⊥AC,

          ∴EC⊥面 ABCD,∴EC⊥CD, EC⊥AD,又AF∥CE,

          ∴AF⊥AD,而AF=CE,AD=CD,

          ∴Rt△≌Rt△,DE=DF.

          過D作DG⊥EF于G,則G為EF的中點(diǎn),于是EG=.

          在Rt△中,,∴.∴.

              設(shè)所求二面角大小為,則由,得,,

          www.ks5u.com

          .21.(I)由于橢圓過定點(diǎn)A(1,0),于是a=1,c=.

          ,∴.

          (Ⅱ)解方程組,得.

          ,∴.

          (Ⅲ)設(shè)拋物線方程為:.

          又∵,∴.

          ,得.

          .

          內(nèi)有根且單調(diào)遞增,

          .

           

           

           

           


          同步練習(xí)冊答案