日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (II)若橢圓與的交于點(diǎn)B,求點(diǎn)B的橫坐標(biāo)的取值范圍;下,現(xiàn)有以A為焦點(diǎn).過點(diǎn)B且開口向左的拋物線.拋物線的頂點(diǎn)坐標(biāo)為M(m,0).求實(shí)數(shù)m的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          橢圓(a>b>0),直線y=k(x-1)經(jīng)過橢圓C的一個(gè)焦點(diǎn)與其相交于點(diǎn)M,N,且點(diǎn)在橢圓C上.
          (I)求橢圓C的方程;
          (II)若線段MN的垂直平分線與x軸相交于點(diǎn)P,問:在x軸上是否存在一個(gè)定點(diǎn)Q,使得為定值?若存在,求出點(diǎn)Q的坐標(biāo)和的值;若不存在,說明理由.

          查看答案和解析>>

          橢圓C1與拋物線C2:x2=2py(p>0)的一個(gè)交點(diǎn)為M.拋物線C2在點(diǎn)M處的切線過橢圓C1的右焦點(diǎn)F.
          (1)若M,求C1和C2的標(biāo)準(zhǔn)方程;
          (II)若b=1,求p關(guān)于a的函數(shù)表達(dá)式p=f(a).

          查看答案和解析>>

          橢圓的右焦點(diǎn)為F,過原點(diǎn)和x軸不重合的直線與橢圓E交于A,B,兩點(diǎn),|AF|+|BF|=4,的最小值為0.5.
          (I)求橢圓E的方程;
          (II)若直線l:y=kx+m與橢圓E交于M,N兩點(diǎn)(其中5m+6k≠0),以線段MN為直徑的圓過E的右頂點(diǎn),求證:直線l過定點(diǎn).

          查看答案和解析>>

          橢圓的右焦點(diǎn)為F,過原點(diǎn)和x軸不重合的直線與橢圓E交于A,B,兩點(diǎn),|AF|+|BF|=4,的最小值為0.5.
          (I)求橢圓E的方程;
          (II)若直線l:y=kx+m與橢圓E交于M,N兩點(diǎn)(其中5m+6k≠0),以線段MN為直徑的圓過E的右頂點(diǎn),求證:直線l過定點(diǎn).

          查看答案和解析>>

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的離心率e=
          3
          2
          ,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-a,0).
          (i)若|AB|=
          4
          2
          5
          ,求直線l的傾斜角;
          (ii)若點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且
          QA
          QB
          =4
          .求y0的值.

          查看答案和解析>>

          高考資源網(wǎng)版權(quán)所有

          一、DBCCC  DCADB

          二、11.72  12.  13.  14.  15.

          三、16.(Ⅰ).

          ,∴,∴,∴當(dāng)時(shí),f(A)取最小值.

          (Ⅱ)由(Ⅰ)知, 時(shí), .于是,

          .

          17.(Ⅰ)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,且,

          故取出的4個(gè)球均為黑球的概率為

          (Ⅱ)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件互斥,

          故取出的4個(gè)球中恰有1個(gè)紅球的概率為

          (Ⅲ)取出的4個(gè)球中紅球的個(gè)數(shù)為0,1,2,3時(shí)的概率分別記為.由(Ⅰ),(Ⅱ)得,.從而

          18.(I)∵AB∥CD,AD=DC=CB=a,∴四邊形ABCD是等腰梯形.設(shè)AC交BD于N,連EN.

          ∵∠ABC=60°,∴∠DCB=∠ADC=120°,∠DAC=∠ACD=30°,

          ∴AC=,AB=2a,=90°.

          又四邊形ACEF是矩形,

          ∴AC⊥平面BCE.∴AC⊥BE.

          (II)∵平面ACEF⊥平面ABCD, EC⊥AC,

          ∴EC⊥面 ABCD,∴EC⊥CD, EC⊥AD,又AF∥CE,

          ∴AF⊥AD,而AF=CE,AD=CD,

          ∴Rt△≌Rt△,DE=DF.

          過D作DG⊥EF于G,則G為EF的中點(diǎn),于是EG=.

          在Rt△中,,∴.∴.

              設(shè)所求二面角大小為,則由,得,,

          www.ks5u.com

          .21.(I)由于橢圓過定點(diǎn)A(1,0),于是a=1,c=.

          ,∴.

          (Ⅱ)解方程組,得.

          ,∴.

          (Ⅲ)設(shè)拋物線方程為:.

          又∵,∴.

          ,得.

          .

          內(nèi)有根且單調(diào)遞增,

          .

           

           

           

           


          同步練習(xí)冊(cè)答案