日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解析:①離心率為,②焦點(diǎn)坐標(biāo)是.故選D. 查看更多

           

          題目列表(包括答案和解析)

          ,,為常數(shù),離心率為的雙曲線上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

          【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

          第二問中,,,

          故直線的方程為,即,

          所以,同理可得:

          借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以

          由已知易得,即

          解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

          (Ⅱ)設(shè),,,

          故直線的方程為,即

          所以,同理可得:,

          是方程的兩個(gè)不同的根,所以

          由已知易得,即

           

          查看答案和解析>>

          已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

          【解析】第一問利用設(shè)橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

          所以

          所以

          ,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即

          所以

          所以,解得

          因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案