日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設平面BFD的法向量為=. 查看更多

           

          題目列表(包括答案和解析)

          已知直三棱柱中, , , 的交點, 若.

          (1)求的長;  (2)求點到平面的距離;

          (3)求二面角的平面角的正弦值的大小.

          【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

          第二問中,利用面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

          解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

          (2)在面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

          (3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

          CHE為二面角C-AB-C的平面角. ………  9分

          sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

          解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

          =(2, -, -), =(0, -3, -h(huán))  ……… 4分

          ·=0,  h=3

          (2)設平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

          點A到平面ABC的距離為H=||=……… 8分

          (3) 設平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

          二面角C-AB-C的大小滿足cos== ………  11分

          二面角C-AB-C的平面角的正弦大小為

           

          查看答案和解析>>

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當時,求證:;

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設平面PCD的法向量

          ,即.不防設,可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設點E的坐標為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          在空間直角坐標系中,已知點P(x,y,z),那么下列說法正確的是(    )

          A.點p關于x軸對稱的坐標是p1(x,-y,z)

          B.點p關于yOz平面對稱的坐標是p2(x,-y,-z)

          C.點p關于y軸對稱點的坐標是p3(x,-y,z)

          D.點p關于原點對稱點的坐標是(-x,-y,-z)

          查看答案和解析>>

          設直線l與平面α相交,且l的方向向量為
          a
          ,α的法向量為
          n
          ,若<
          a
          ,
          n
          >=
          3
          ,則l與α所成的角為( 。

          查看答案和解析>>


          同步練習冊答案