日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 則.為所求距離. 查看更多

           

          題目列表(包括答案和解析)

          ,為常數(shù),離心率為的雙曲線上的動點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

          【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

          第二問中,,,

          故直線的方程為,即,

          所以,同理可得:

          借助于根與系數(shù)的關(guān)系得到即是方程的兩個(gè)不同的根,所以

          由已知易得,即

          解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

          (Ⅱ)設(shè),,,

          故直線的方程為,即

          所以,同理可得:,

          ,是方程的兩個(gè)不同的根,所以

          由已知易得,即

           

          查看答案和解析>>

          已知曲線上動點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)

          (1)求曲線的軌跡方程;

          (2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;

          (3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

          【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.

          代入坐標(biāo)得到

          第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;

          當(dāng)直線l的斜率為k時(shí),;,化簡得

          第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

          由于點(diǎn)M在橢圓C上,所以

          由已知,則

          由于,故當(dāng)時(shí),取得最小值為

          計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

          故圓T的方程為:

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,則面PAD⊥底面 ABCD,

          側(cè)棱PA=PD,底面ABCD為直角梯形,其中

          BCAD,ABAD,AD=2AB=2BC=2,OAD中點(diǎn).

          (1)求證:PO⊥平面ABCD

          (2)求異面直線PBCD所成角的余弦值;

          (3)線段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          已知拋物線C的對稱軸與y軸平行,頂點(diǎn)到原點(diǎn)的距離為5,若將拋物線C向上平移3個(gè)單位,則在x軸上截得的線段為原拋物線C在x軸上截得的線段的一半;若將拋物線C向左平移1個(gè)單位,則所得拋物線過原點(diǎn),求拋物線C的方程.

          查看答案和解析>>

          本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          33
          cd
          ,若矩陣A屬于特征值6的一個(gè)特征向量為
          α
          =
          1
          1
          ,屬于特征值1的一個(gè)特征向量為
          β
          =
          &-2
          ;
          (Ⅰ)求矩陣A;
          (Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知直線的極坐標(biāo)方程為ρsin(θ+
          π
          4
          )=
          2
          2
          ,圓M的參數(shù)方程為
          x=2cosθ
          y=-2+2sinθ
          (其中θ為參數(shù)).
          (Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
          (3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
          (Ⅰ)若a=-1,解不等式f(x)≥3;
          (Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案