日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

          (1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

          查看答案和解析>>

          (本小題滿分12分)已知等比數(shù)列{an}中, 

             (Ⅰ)求數(shù)列{an}的通項公式an;

             (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

             (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù),其中a為常數(shù).

             (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

             (Ⅱ)求的單調(diào)區(qū)間.

          查看答案和解析>>

          (本小題滿分12分)

          甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

             (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

             (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學(xué)期望.

          查看答案和解析>>

          (本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

             (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

             (2)當(dāng)時,求弦長|AB|的取值范圍.

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分. 在每小題給出的四個選項中,選擇一個符合題目要求的選項.

          (1)C    (2)B    (3)D    (4)C     (5)B    (6)B   

          (7)A    (8)C    (9)B    (10)D   (11)A    (12)B

           

          二、填空題:本大題共4小題,每小題4分,共16分. 答案填在題中橫線上.

          13. 如果一個二面角的兩個面與另一個二面角的兩個面分別垂直,則這兩個二面角相等或互補     假

          14.

          15. 0

          16.

          三、解答題:本大題共6小題,共74分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.

          17.(本小題滿分12分)

          解:(Ⅰ)………2分

          ………4分

          ………6分

           (II)

             ………8分

          的圖象與x軸正半軸的第一個交點為  ………10分

          所以的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積

          =    …12分

           

          18.(本題滿分12分)

          解:(Ⅰ)設(shè)搖獎一次,獲得一、二、三、四、五等獎的事件分別記為.

          則其概率分別為……3分

          設(shè)搖獎一次支出的學(xué)習(xí)用品相應(yīng)的款項為,則的分布列為:

          1

          2

          3

          4

          5

           

           

           

           

                                                             

          .………6分

          若捐款10元者達到1500人次,那么購買學(xué)習(xí)用品的款項為(元),

          除去購買學(xué)習(xí)用品的款項后,剩余款項為(元),

          故剩余款項可以幫助該生完成手術(shù)治療. ………8分

          (II)記事件“學(xué)生甲捐款20元獲得價值6元的學(xué)習(xí)用品”為,則.

          即學(xué)生甲捐款20元獲得價值6元的學(xué)習(xí)用品的概率為………12分

          19.(本小題滿分12分)

          以D為原點,以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標系D―xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2). …  3分

          (Ⅰ)證明:設(shè)則有所以,,∴平面;………6分

          (II)解:

          設(shè)為平面的法向量,

          于是………8分

          同理可以求得平面的一個法向量,………10分

          ∴二面角的余弦值為. ………12分

          20.(本小題滿分12分)

          解:(Ⅰ)對求導(dǎo)數(shù),得,切點是的切線方程是.…2分

          當(dāng)時,切線過點,即,得;

          當(dāng)時,切線過點,即,得.

          所以數(shù)列是首項,公比為的等比數(shù)列,

          所以數(shù)列的通項公式為.………4分(文………6分)

          (II)應(yīng)用二項式定理,得

          ………8分

          (III)

          當(dāng)時,數(shù)列的前項和=

          同乘以,得=兩式相減,………10分(文………8分)

          =

          所以=.………12分

          21.(本題滿分12分)

          解:(Ⅰ)由于所以

          ………2分

          ,

          當(dāng)a=2時,

          所以2-a≠0.

          ①     當(dāng)2-a>0,即a<2時,的變化情況如下表1:

           

          x

          0

          (0,2-a)

          2-a

          (2-a,+∞)

          0

          +

          0

          極小值

          極大值

          此時應(yīng)有f(0)=0,所以a=0<2;

          ②當(dāng)2-a<0,即a>2時,的變化情況如下表2:

          x

          2-a

          (2-a,0)

          0

          (0,+∞)

          0

          +

          0

          極小值

          極大值

          此時應(yīng)有

          綜上可知,當(dāng)a=0或4時,的極小值為0. ………6分

          (II)若a<2,則由表1可知,應(yīng)有 也就是

          設(shè)

          由于a<2得

          所以方程  無解. ………8分

          若a>2,則由表2可知,應(yīng)有f(0)=3,即a=3. ………10分

          綜上可知,當(dāng)且僅當(dāng)a=3時,f(x)的極大值為3. ………12分

          22.(本小題滿分14分)

          解:(Ⅰ)由得,;……4分

          由直線與圓相切,得,所以,。所以橢圓的方程是.……4分

          (II)由條件知,,即動點到定點的距離等于它到直線的距離,由拋物線的定義得點的軌跡的方程是.  ……8分

          (III)由(2)知,設(shè),所以,.

          ,得.因為,化簡得,……10分

          (當(dāng)且僅當(dāng),即時等號成立). ……12分

          ,又

          所以當(dāng),即時,,故的取值范圍是.……14分

           

           


          同步練習(xí)冊答案