日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知的最小正周期為. 查看更多

           

          題目列表(包括答案和解析)

           已知的最小正     周期為。

              (I)求的單調(diào)遞增區(qū)間;

              (II)求的最大值和最小值

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

          已知函數(shù)的最小正周期為。

          (Ⅰ)求的值;

          (Ⅱ)討論在區(qū)間上的單調(diào)性。

          查看答案和解析>>

          已知函數(shù) 的最小正周期為。

          (1)求的值;  (2)求函數(shù)在區(qū)間上的取值范圍。

          查看答案和解析>>

          已知函數(shù)的最小正周期為π。將y=f(x)的圖象向左平移|φ|個(gè)單位長(zhǎng)度,所得圖象關(guān)于y軸對(duì)稱,則φ的一個(gè)值是
          [     ]
          A、
          B、
          C、
          D、

          查看答案和解析>>

          已知函數(shù)的最小正周期為,最小值為,圖像過(guò)點(diǎn)

          (1)求的解析式

          (2)求滿足的集合 。

           

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分。

          1―5 DCCBD    6―10 ACBBB

          二、填空題:本大題共4小題,每小題4分,共16分。

          11.1200    12.―3    13.e    14.2    15.16

          三、解答題:本大題共6小題,共80分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。

          16.(本小題滿分13分)

          解:(I)由已知

             (II)

           

            <pre id="o6wx9"></pre>

                 (I)證明:(1)連接CD1

              ∵四棱柱ABCD―A1B1C1D1中,底面ABCD是菱形

              ∴A1D1//AD,AD//BC,A1D1=AD,AD=BC;

              ∴A1D1//BC,A1D1=BC,

              ∴四邊形A1BCD1為平行四邊形;∴A1B//D1C………3分

              ∵點(diǎn)E、F分別是棱CC1、C1D1的中點(diǎn);∴EF//D1C

              又∴EF//A1B

              又∵A1B平面A1DB,EF面A1DB;

              ∴EF⊥平面A1BD  ………………6分

                 (II)連結(jié)AC交BD于點(diǎn)G,連接A1G,EG

              ∵四棱柱ABCD―A1B1C1D1中,A1A⊥底面ABCD,

              底面ABCD是菱形

              ∴AA1⊥AB,AA1⊥AD,EC⊥BC,EC⊥DC,

              AD=AB,BC=CD

              ∵底面ABCD是菱形,∴點(diǎn)G為BD中點(diǎn),

              ∴A1G⊥BD,EG⊥BD

              ∴∠A1GE為直二面角A1―BD―E的平面角,

              ∴∠A1GE=90°………………3分

              在棱形ABCD中,∠DAB=60°,AB=2,

              ∴∠ABC=120°,

              ∴AC=

              ∴AG=GC=  ………………10分

              在面ACC1A1中,△AGA1,△GCE為直角三角形

              ∵∠A1GE=90°∴∠EGC+∠A1GA=90°,∴∠EGC=∠AA1G

              ∴Rt△A1AG∽R(shí)t△ECG ………………12分

              解法二:

                 (I)證明:取AB的中點(diǎn)G,連接GD

              ∵底面ABCD是菱形,∠DAB=60°,AB=2

              ∴△ABD是正三角形,∴DG⊥AB,DG=

              又∵AB//CD,∴DG⊥DC   …………2分

              ∵四棱柱ABCD―A1B1C1D1為直四棱柱,AA1//DD1

              A1A⊥底面ABCD,∴DD1⊥底面ABCD

              以D為坐標(biāo)原點(diǎn),射線DG為x軸的正半軸,射線DC為y軸的正半軸,

              建立如圖所示空間直角坐標(biāo)系D―xyz.

              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>
            1. <sub id="o5kww"></sub>

              18.解:(I)擲一枚硬幣三次,列出所有可能情況共8種:

                 (上上上),(上上下),(上下上),(上下下),(下上上),(下上下),(下下上),(下下下);

                  其中甲得2分、乙得1分的有3種,故所求概率  …………3分

                 (II)在題設(shè)條件下,至多還要2局,情形一:在第四局,硬幣正面朝上,則甲積3分、乙積1分,甲獲勝,概率為1/2;情形二:在第四局,硬幣正面朝下,第五局硬幣正面朝上,則甲積3分、乙積2分,甲獲勝,概率為1/4。由加法公式,甲獲勝的概率為1/2+1/4=3/4。   ………………8分

                 (III)據(jù)題意,ξ的取值為3、4、5,

                  且   ………………11分

                 

                  其分布列如下:

              ξ

              3

              4

              5

              P

              1/4

              3/8

              3/8

                     ………………13分

              19.解:(I)∵F1,F(xiàn)2三等份BD, …………1分

                     ………………3分

                 (II)由(I)知為BF2的中點(diǎn),

                 

                 (III)依題意直線AC的斜率存在,

               

                1.     同理可求

                     

                     (III)法二:

                     

                  20.(I)解:

                     (II)切線l與曲線有且只有一個(gè)公共點(diǎn)等價(jià)

                  的唯一解;  ………………7分

                   

                   

                  x

                  (―1,0)

                  0

                  +

                  0

                  0

                  +

                  極大值0

                  極小值

                  x

                  0

                  +

                  0

                  0

                  +

                  極大值

                  極小值0

                     (III)

                  21.(I)由已知BA=  ………………2分

                  任取曲線

                  則有=,即有  ………………5分

                    ………………6分

                     …………①   與   ………………②

                  比較①②得

                     (II)設(shè)圓C上的任意一點(diǎn)的極坐標(biāo),過(guò)OC的直徑的另一端點(diǎn)為B,

                  邊PO,PB則在直角三角形OPB中, …………5分

                  (寫(xiě)不扣分)

                  從而有   ………………7分

                     (III)證:為定值,

                  利用柯西不等式得到

                  ………5分