日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知x.y.z∈R.且x+y+z=1.x2+y2+z2=.證明:x.y.z∈[0.] 查看更多

           

          題目列表(包括答案和解析)

          已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,則xyz的最大值是
          5
          27
          5
          27

          查看答案和解析>>

          已知x,y,z∈R,且x+y+z=1,x2+y2+z2=
          1
          2
          ,證明:x,y,z∈[0,
          2
          3
          ].

          查看答案和解析>>

            已知x,y,z∈R,且x+y+z=1,x2+y2+z2=

          證明:x,yz∈[0,

          查看答案和解析>>

          已知x,y,z∈R,且x+y+z=1,x2+y2+z2=數(shù)學(xué)公式,證明:x,y,z∈[0,數(shù)學(xué)公式].

          查看答案和解析>>

          已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,則xyz的最大值是   

          查看答案和解析>>

          難點(diǎn)磁場

          證法一:(分析綜合法)

          欲證原式,即證4(ab)2+4(a2+b2)-25ab+4≥0,即證4(ab)2-33(ab)+8≥0,即證ab6ec8aac122bd4f6eab≥8.

          a>0,b>0,a+b=1,∴ab≥8不可能成立

          ∵1=a+b≥26ec8aac122bd4f6e,∴ab6ec8aac122bd4f6e,從而得證.

          證法二:(均值代換法)

          設(shè)a=6ec8aac122bd4f6e+t1b=6ec8aac122bd4f6e+t2.

          a+b=1,a>0,b>0,∴t1+t2=0,|t1|<6ec8aac122bd4f6e,|t2|<6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          顯然當(dāng)且僅當(dāng)t=0,即a=b=6ec8aac122bd4f6e時,等號成立.

          證法三:(比較法)

          a+b=1,a>0,b>0,∴a+b≥26ec8aac122bd4f6e,∴ab6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          證法四:(綜合法)

          a+b=1, a>0,b>0,∴a+b≥26ec8aac122bd4f6e,∴ab6ec8aac122bd4f6e.

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          證法五:(三角代換法)

          a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,6ec8aac122bd4f6e)

          6ec8aac122bd4f6e2

          殲滅難點(diǎn)訓(xùn)練

          一、1.解析:令6ec8aac122bd4f6e=cos2θ,6ec8aac122bd4f6e=sin2θ,則x=asec2θy=bcsc2θ,∴x+y=asec2θ+bcsc2θ=a+b+atan2θ+bcot2θa+b+26ec8aac122bd4f6e.

          答案:a+b+26ec8aac122bd4f6e

          2.解析:由0≤|ad|<|bc|6ec8aac122bd4f6e(ad)2<(bc)26ec8aac122bd4f6e(a+b)2-4ad<(b+c)2-4bc?

          a+d=b+c,∴-4ad<-4bc,故adbc.

          答案:adbc

          3.解析:把p、q看成變量,則mpn,mqn.

          答案:mpqn

          二、4.(1)證法一:a2+b2+c26ec8aac122bd4f6e=6ec8aac122bd4f6e(3a2+3b2+3c2-1)

          =6ec8aac122bd4f6e[3a2+3b2+3c2-(a+b+c)2

          =6ec8aac122bd4f6e[3a2+3b2+3c2a2b2c2-2ab-2ac-2bc

          =6ec8aac122bd4f6e[(ab)2+(bc)2+(ca)2]≥0  ∴a2+b2+c26ec8aac122bd4f6e

          證法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bca2+b2+c2+a2+b2+a2+c2+b2+c2

          ∴3(a2+b2+c2)≥(a+b+c)2=1  ∴a2+b2+c26ec8aac122bd4f6e

          證法三:∵6ec8aac122bd4f6ea2+b2+c26ec8aac122bd4f6e

          a2+b2+c26ec8aac122bd4f6e

          證法四:設(shè)a=6ec8aac122bd4f6e+αb=6ec8aac122bd4f6e+β,c=6ec8aac122bd4f6e+γ.

          a+b+c=1,∴α+β+γ=0

          a2+b2+c2=(6ec8aac122bd4f6e+α)2+(6ec8aac122bd4f6e+β)2+(6ec8aac122bd4f6e+γ)2

          =6ec8aac122bd4f6e+6ec8aac122bd4f6e (α+β+γ)+α2+β2+γ2

          =6ec8aac122bd4f6e+α2+β2+γ26ec8aac122bd4f6e

          a2+b2+c26ec8aac122bd4f6e

          6ec8aac122bd4f6e

          ∴原不等式成立.

          證法二:6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e6ec8aac122bd4f6e<6

          ∴原不等式成立.

          5.證法一:由x+y+z=1,x2+y2+z2=6ec8aac122bd4f6e,得x2+y2+(1-xy)2=6ec8aac122bd4f6e,整理成關(guān)于y的一元二次方程得:

          2y2-2(1-x)y+2x2-2x+6ec8aac122bd4f6e=0,∵yR,故Δ≥0

          ∴4(1-x)2-4×2(2x2-2x+6ec8aac122bd4f6e)≥0,得0≤x6ec8aac122bd4f6e,∴x∈[0,6ec8aac122bd4f6e

          同理可得y,z∈[0,6ec8aac122bd4f6e

          證法二:設(shè)x=6ec8aac122bd4f6e+x′,y=6ec8aac122bd4f6e+y′,z=6ec8aac122bd4f6e+z′,則x′+y′+z′=0,

          于是6ec8aac122bd4f6e=(6ec8aac122bd4f6e+x′)2+(6ec8aac122bd4f6e+y′)2+(6ec8aac122bd4f6e+z′)2

          =6ec8aac122bd4f6e+x2+y2+z2+6ec8aac122bd4f6e (x′+y′+z′)

          =6ec8aac122bd4f6e+x2+y2+z26ec8aac122bd4f6e+x2+6ec8aac122bd4f6e=6ec8aac122bd4f6e+6ec8aac122bd4f6ex2

          x26ec8aac122bd4f6e,x′∈[-6ec8aac122bd4f6e6ec8aac122bd4f6e],x∈[0,6ec8aac122bd4f6e],同理y,z∈[0,6ec8aac122bd4f6e

          證法三:設(shè)x、y、z三數(shù)中若有負(fù)數(shù),不妨設(shè)x<0,則x2>0,6ec8aac122bd4f6e=x2+y2+z2x2+6ec8aac122bd4f6e6ec8aac122bd4f6e,矛盾.

          x、y、z三數(shù)中若有最大者大于6ec8aac122bd4f6e,不妨設(shè)x6ec8aac122bd4f6e,則6ec8aac122bd4f6e=x2+y2+z2x2+6ec8aac122bd4f6e=x2+6ec8aac122bd4f6e=6ec8aac122bd4f6ex2x+6ec8aac122bd4f6e

          =6ec8aac122bd4f6ex(x6ec8aac122bd4f6e)+6ec8aac122bd4f6e6ec8aac122bd4f6e;矛盾.

          xy、z∈[0,6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          ∵上式顯然成立,∴原不等式得證.

          7.證明:(1)對于1<im,且A6ec8aac122bd4f6e =m?…?(mi+1),

          6ec8aac122bd4f6e,

          由于mn,對于整數(shù)k=1,2,…,i-1,有6ec8aac122bd4f6e,

          所以6ec8aac122bd4f6e

          (2)由二項(xiàng)式定理有:

          (1+m)n=1+C6ec8aac122bd4f6em+C6ec8aac122bd4f6em2+…+C6ec8aac122bd4f6emn,

          (1+n)m=1+C6ec8aac122bd4f6en+C6ec8aac122bd4f6en2+…+C6ec8aac122bd4f6enm

          由(1)知miA6ec8aac122bd4f6eniA6ec8aac122bd4f6e (1<im6ec8aac122bd4f6e6ec8aac122bd4f6e,而C6ec8aac122bd4f6e=6ec8aac122bd4f6e

          miCinniCim(1<mn6ec8aac122bd4f6e

          m0C6ec8aac122bd4f6e=n0C6ec8aac122bd4f6e=1,mC6ec8aac122bd4f6e=nC6ec8aac122bd4f6e=m?n,m2C6ec8aac122bd4f6en2C6ec8aac122bd4f6e,…,

          mmC6ec8aac122bd4f6enmC6ec8aac122bd4f6e,mm+1C6ec8aac122bd4f6e>0,…,mnC6ec8aac122bd4f6e>0,

          ∴1+C6ec8aac122bd4f6em+C6ec8aac122bd4f6em2+…+C6ec8aac122bd4f6emn>1+C6ec8aac122bd4f6en+C2mn2+…+C6ec8aac122bd4f6enm,

          即(1+m)n>(1+n)m成立.

          8.證法一:因a>0,b>0,a3+b3=2,所以

          (a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6

          =3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(ab)2≤0.

          即(a+b)3≤23,又a+b>0,所以a+b≤2,因?yàn)?6ec8aac122bd4f6ea+b≤2,

          所以ab≤1.

          證法二:設(shè)a、b為方程x2mx+n=0的兩根,則6ec8aac122bd4f6e,

          因?yàn)?i>a>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0                                         ①

          因?yàn)?=a3+b3=(a+b)(a2ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)

          所以n=6ec8aac122bd4f6e                                                                                                    ②

          將②代入①得m2-4(6ec8aac122bd4f6e)≥0,

          6ec8aac122bd4f6e≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,

          由2≥m 得4≥m2,又m2≥4n,所以4≥4n,

          n≤1,所以ab≤1.

          證法三:因a>0,b>0,a3+b3=2,所以

          2=a3+b3=(a+b)(a2+b2ab)≥(a+b)(2abab)=ab(a+b)

          于是有6≥3ab(a+b),從而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=?

          (a+b)3,所以a+b≤2,(下略)

          證法四:因?yàn)?a >6ec8aac122bd4f6e

          6ec8aac122bd4f6e≥0,

          所以對任意非負(fù)實(shí)數(shù)a、b,有6ec8aac122bd4f6e6ec8aac122bd4f6e

          因?yàn)?i>a>0,b>0,a3+b3=2,所以1=6ec8aac122bd4f6e6ec8aac122bd4f6e,

          6ec8aac122bd4f6e≤1,即a+b≤2,(以下略)

          證法五:假設(shè)a+b>2,則

          a3+b3=(a+b)(a2ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,

          a3+b3=(a+b)[a2ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)

          因?yàn)?i>a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)

           

           

           


          同步練習(xí)冊答案