日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線=1(m>0,n>0)的頂點為A1.A2.與y軸平行的直線l交雙曲線于點P.Q.(1)求直線A1P與A2Q交點M的軌跡方程,(2)當(dāng)m≠n時.求所得圓錐曲線的焦點坐標(biāo).準(zhǔn)線方程和離心率. 查看更多

           

          題目列表(包括答案和解析)

          已知雙曲線=1(a>0,b>0)的動弦BC平行于虛軸,M、N是雙曲線的左、右頂點,

          (1)求直線MBCN的交點P的軌跡方程;

          (2)若P(x1,y1),B(x2,y2),求證:ax1x2的比例中項.

          查看答案和解析>>

          已知雙曲線=1(a>0,b>0)的動弦BC平行于虛軸,M、N是雙曲線的左、右頂點,

          (1)求直線MB、CN的交點P的軌跡方程;

          (2)若P(x1,y1),B(x2,y2),求證:ax1、x2的比例中項.

          查看答案和解析>>

          已知雙曲線=1(a>0,b>0)的動弦BC平行于虛軸,M、N是雙曲線的左、右頂點.

          (1)求直線MB、CN的交點P的軌跡方程;

          (2)若P(x1,y1),B(x2,y2),求證:a是x1、x2的比例中項.

          查看答案和解析>>

          已知雙曲線=1(a>0,b>0)的動弦BC平行于虛軸,M、N是雙曲線的左、右頂點.

          (1)求直線MB、CN的交點P的軌跡方程;

          (2)若P(x1,y1),B(x2,y2),求證:a是x1、x2的比例中項.

          查看答案和解析>>

          已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =I(a>0,b>)
          的離心率為
          3
          ,右焦點為F,過點M(1,0)且斜率為1的直線與雙曲線C交于A,B兩點,并且
          FA
          FB
          =4

          (1)求雙曲線方程;
          (2)過右焦點F作直線l交雙曲線C右支于P,Q兩點,問在原點與右頂點之間是否存在點N,使的無論直線l的傾斜角多大,都有∠PNF=∠QNF.

          查看答案和解析>>

          6ec8aac122bd4f6e難點磁場

          解:建立坐標(biāo)系如圖所示,

          設(shè)|AB|=2a,則A(-a,0),B(a,0).

          設(shè)M(x,y)是軌跡上任意一點.

          則由題設(shè),得6ec8aac122bd4f6e=λ,坐標(biāo)代入,得6ec8aac122bd4f6e=λ,化簡得

          (1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0

          (1)當(dāng)λ=1時,即|MA|=|MB|時,點M的軌跡方程是x=0,點M的軌跡是直線(y軸).

          (2)當(dāng)λ≠1時,點M的軌跡方程是x2+y2+6ec8aac122bd4f6ex+a2=0.點M的軌跡是以

          (-6ec8aac122bd4f6e,0)為圓心,6ec8aac122bd4f6e為半徑的圓.

          殲滅難點訓(xùn)練

          一、1.解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,

          ∴|PF1|+|PF2|=|PF1|+|PQ|=2a,

          即|F1Q|=2a,∴動點Q到定點F1的距離等于定長2a,故動點Q的軌跡是圓.

          答案:A

          2.解析:設(shè)交點P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)

          A1P1、P共線,∴6ec8aac122bd4f6e

          A2、P2、P共線,∴6ec8aac122bd4f6e

          解得x0=6ec8aac122bd4f6e

          答案:C

          二、3.解析:由sinC-sinB=6ec8aac122bd4f6esinA,得cb=6ec8aac122bd4f6ea,

          ∴應(yīng)為雙曲線一支,且實軸長為6ec8aac122bd4f6e,故方程為6ec8aac122bd4f6e.

          答案:6ec8aac122bd4f6e

          4.解析:設(shè)P(x,y),依題意有6ec8aac122bd4f6e,化簡得P點軌跡方程為4x2+4y2-85x+100=0.

          答案:4x2+4y2-85x+100=0

          三、5.解:設(shè)過B、C異于l的兩切線分別切⊙O′于D、E兩點,兩切線交于點P.由切線的性質(zhì)知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|

          =|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由橢圓定義知,點P的軌跡是以B、C為兩焦點的橢圓,以l所在的直線為x軸,以BC的中點為原點,建立坐標(biāo)系,可求得動點P的軌跡方程為6ec8aac122bd4f6e=1(y≠0)

          6.解:設(shè)P(x0,y0)(x≠±a),Q(x,y).

          A1(-a,0),A2(a,0).

          由條件6ec8aac122bd4f6e

          而點P(x0,y0)在雙曲線上,∴b2x02a2y02=a2b2.

          b2(-x2)-a2(6ec8aac122bd4f6e)2=a2b2

          化簡得Q點的軌跡方程為:a2x2b2y2=a4(x≠±a).

          7.解:(1)設(shè)P點的坐標(biāo)為(x1,y1),則Q點坐標(biāo)為(x1,-y1),又有A1(-m,0),A2(m,0),

          A1P的方程為:y=6ec8aac122bd4f6e                                                                 ①

          A2Q的方程為:y=-6ec8aac122bd4f6e                                                                  ②

          ①×②得:y2=-6ec8aac122bd4f6e                                                                ③

          又因點P在雙曲線上,故6ec8aac122bd4f6e

          代入③并整理得6ec8aac122bd4f6e=1.此即為M的軌跡方程.

          (2)當(dāng)mn時,M的軌跡方程是橢圓.

          (?)當(dāng)mn時,焦點坐標(biāo)為(±6ec8aac122bd4f6e,0),準(zhǔn)線方程為x6ec8aac122bd4f6e,離心率e=6ec8aac122bd4f6e

          (?)當(dāng)mn時,焦點坐標(biāo)為(0,±6ec8aac122bd4f6e),準(zhǔn)線方程為y6ec8aac122bd4f6e,離心率e=6ec8aac122bd4f6e.

          8.解:(1)∵點F2關(guān)于l的對稱點為Q,連接PQ,

          ∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|

          又因為l為∠F1PF2外角的平分線,故點F1P、Q在同一直線上,設(shè)存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).

          |F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,則(x1+c)2+y12=(2a)2.

          6ec8aac122bd4f6e6ec8aac122bd4f6e

          x1=2x0c,y1=2y0.

          ∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2.

          R的軌跡方程為:x2+y2=a2(y≠0)

          (2)如右圖,∵SAOB=6ec8aac122bd4f6e|OA|?|OB|?sinAOB=6ec8aac122bd4f6esinAOB

          當(dāng)∠AOB=90°時,SAOB最大值為6ec8aac122bd4f6ea2.

          此時弦心距|OC|=6ec8aac122bd4f6e.

          在Rt△AOC中,∠AOC=45°,

          6ec8aac122bd4f6e

           

           


          同步練習(xí)冊答案