日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即:所求二面角的大小為. 查看更多

           

          題目列表(包括答案和解析)

          已知四棱錐的底面為直角梯形,,底面,且,,的中點。

          (1)證明:面;

          (2)求所成的角;

          (3)求面與面所成二面角的余弦值.

          【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

          (2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

          (3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

           

          查看答案和解析>>

          如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

          (Ⅰ)求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大。

          【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

          (3)因為∴為面的法向量.∵,

          為平面的法向量.∴利用法向量的夾角公式,,

          的夾角為,即二面角的大小為

          方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點、,

          ,又點,,∴

          ,且不共線,∴

          平面平面,∴平面.…………………4分

          (Ⅱ)∵

          ,,即,,

          ,∴平面.   ………8分

          (Ⅲ)∵,,∴平面,

          為面的法向量.∵,,

          為平面的法向量.∴

          的夾角為,即二面角的大小為

           

          查看答案和解析>>


          同步練習(xí)冊答案