日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)求函數(shù)在上的單調(diào)增區(qū)間, 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)f(x)的定義域?yàn)镽,且滿足:
          ①對于任意的x,y∈R,f(x-y+1)=f(x)f(y)+f(1-x)f(1-y);
          ②f(x)在區(qū)間[0,1]上單調(diào)遞增.
          求:(Ⅰ)f(0);(Ⅱ)不等式2f(x+1)-1≥0的解集.

          查看答案和解析>>

          函數(shù)f(x)=ax3+bx2的圖象過點(diǎn)M(1,4),在點(diǎn)M處的切線恰與直線x+9y+5=0垂直.
          (1)求a,b的值;
          (2)若f(x)在區(qū)間(m-1,m+1)上單調(diào)遞增,求m的取值范圍.

          查看答案和解析>>

          已知函數(shù)

          (1)若,求函數(shù)上的單調(diào)增區(qū)間;

          (2)若函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          函數(shù)f(x)=ax3+bx2的圖象過點(diǎn)M(1,4),在點(diǎn)M處的切線恰與直線x+9y+5=0垂直.
          (1)求a,b的值;
          (2)若f(x)在區(qū)間(m-1,m+1)上單調(diào)遞增,求m的取值范圍.

          查看答案和解析>>

          設(shè)函數(shù)(Ⅰ)若函數(shù)上單調(diào)遞減,在區(qū)間單調(diào)遞增,求的值;

          (Ⅱ)若函數(shù)上有兩個(gè)不同的極值點(diǎn),求的取值范圍;

          (Ⅲ)若方程有且只有三個(gè)不同的實(shí)根,求的取值范圍。

           

          查看答案和解析>>

          一、BDCBD    ACA CC    

          二、                    ①④

          三、16.解:(1)  

            即   

          為銳角       

           (2)

            又 代入上式得:(當(dāng)且僅當(dāng) 時(shí)等號成立。)

            (當(dāng)且僅當(dāng) 時(shí)等號成立。)

          17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為

          ,可得.又,可知,即,

          解得. 由題意得.  .故數(shù)列的通項(xiàng)為

            (2)由于   由(1)得 

          =

          18.解:(1)因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽高級2009年高三年級檢測試題(二)--數(shù)學(xué)文科.files/image195.gif" >     圖象的一條對稱軸是直線 

            1. 20081226

              (2)

                由

              分別令的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

              (3) 列表如下:

              0

              0

              1

              0

              ―1

              0

              19.解:(I)由,則.

              兩式相減得. 即.          

              時(shí),.∴數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.

              (Ⅱ)由(I)知.∴            

              ①當(dāng)為偶數(shù)時(shí),

              ∴原不等式可化為,即.故不存在合條件的.      

              ②當(dāng)為奇數(shù)時(shí),.

              原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

              20.解:(1)依題意,得

                 (2)令

              當(dāng)在此區(qū)間為增函數(shù)

              當(dāng)在此區(qū)間為減函數(shù)

              當(dāng)在此區(qū)間為增函數(shù)

              處取得極大值又

              因此,當(dāng)

              要使得不等式

              所以,存在最小的正整數(shù)k=2007,

              使得不等式恒成立!7分

                (3)(方法一)

                   

              又∵由(2)知為增函數(shù),

              綜上可得

              (方法2)由(2)知,函數(shù)

              上是減函數(shù),在[,1]上是增函數(shù)又

              所以,當(dāng)時(shí),-

              又t>0,

              ,且函數(shù)上是增函數(shù),

               

              綜上可得

              21.解:(1) 

              當(dāng)時(shí),

              函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)。

                 (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

              由②知對,都有

              又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽高級2009年高三年級檢測試題(二)--數(shù)學(xué)文科.files/image514.gif" >恒成立,  ,即,即

              當(dāng)時(shí),,

              其頂點(diǎn)為(-1,0)滿足條件①,又,

              都有,滿足條件②!啻嬖,使同時(shí)滿足條件①、②。

                 (3)令,則

              內(nèi)必有一個(gè)實(shí)根。即

              使成立。

               

               

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>