日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求數(shù)列和{bn}的通項公式, 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列{an} 和{bn} 的通項公式分別為an=3n+6,bn=2n+7 (n∈N*).將集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素從小到大依次排列,構成數(shù)列c1,c2,c3,…,cn,…
          (1)求三個最小的數(shù),使它們既是數(shù)列{an} 中的項,又是數(shù)列{bn}中的項;
          (2)數(shù)列c1,c2,c3,…,c40 中有多少項不是數(shù)列{bn}中的項?請說明理由;
          (3)求數(shù)列{cn}的前4n 項和S4n(n∈N*).

          查看答案和解析>>

          已知數(shù)列{an}和{bn}的通項公式分別為an=3n+6,bn=2n+7(n∈N*).將集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素從小到大依次排列,構成數(shù)列c1,c2,c3,…,cn,…
          (1)寫出c1,c2,c3,c4
          (2)求證:在數(shù)列{cn}中,但不在數(shù)列{bn}中的項恰為a2,a4,…,a2n,…;
          (3)求數(shù)列{cn}的通項公式.

          查看答案和解析>>

          數(shù)列{an}的通項公式為an=
          1
          (n+1)2
          (n∈N*),設f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
          (1)求f(1)、f(2)、f(3)、f(4)的值;
          (2)求f(n)的表達式;
          (3)數(shù)列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項和為g(n),求證:當n∈N*時,g(2n)-
          n
          2
          ≥1.

          查看答案和解析>>

          已知數(shù)列{an}和{bn}的通項公式分別為an=3n+6,bn=2n+7(n∈N*).將集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素從小到大依次排列,構成數(shù)列c1,c2,c3,…,cn,…
          (1)寫出c1,c2,c3,c4;
          (2)求證:在數(shù)列{cn}中,但不在數(shù)列{bn}中的項恰為a2,a4,…,a2n,…;
          (3)求數(shù)列{cn}的通項公式.

          查看答案和解析>>

          數(shù)列{an}的通項公式為an=數(shù)學公式(n∈N*),設f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
          (1)求f(1)、f(2)、f(3)、f(4)的值;
          (2)求f(n)的表達式;
          (3)數(shù)列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項和為g(n),求證:當n∈N*時,g(2n)-數(shù)學公式≥1.

          查看答案和解析>>

          一、選擇題:本大題共10小題,每小題5分,共50分.

          CBCDB    DADCA

          二、填空題:本大題共5小題,每小題5分,共25分.

          11.90       12.[)       13.       14.1 ;3899       15.

          三、解答題:本大題共6小題,共75分.

          16.(本小題滿分13分)

          解:(1)

          ……3分……4分

          的單調(diào)區(qū)間,k∈Z ......6分

          (2)由得 .....7分

          的內(nèi)角......9分

                 ...11分

            ....12分

          17. (本小題滿分13分)

          解:(1)記“甲擊中目標的次數(shù)減去乙擊中目標的次數(shù)為2”為事件A,則

          ,解得.....4分

          (2)的所有可能取值為0,1,2.記“在第一次射擊中甲擊中目標”為事件;記“在第一次射擊中乙擊中目標”為事件.

             則,

            

             ,.....10分

          所以的分布列為

          0

          1

          2

          P

          =.....12分

          18. (本小題滿分13分)

          解:(1)當中點時,有平面

          證明:連結(jié),連結(jié)

          ∵四邊形是矩形  ∴中點

          中點,從而

          平面,平面

          平面.....4分

          (2)建立空間直角坐標系如圖所示,

          ,,,,

          .....6分

          所以,.

          為平面的法向量,則有,即

          ,可得平面的一個法向量為,.....9分

          而平面的一個法向量為 .....10分

          所以

          所以二面角的余弦值為 .....12分

          (用其它方法解題酌情給分)

          19.(本小題滿分12分)

          解:(1)由題意知

          因此數(shù)列是一個首項.公比為3的等比數(shù)列,所以......2分

          =100―(1+3+9)

          所以=87,解得

          因此數(shù)列是一個首項,公差為―5的等差數(shù)列,

          所以 .....4分

           (2) 求視力不小于5.0的學生人數(shù)為.....7分

          (3) 由   ①

          可知,當時,  ②

          ①-②得,當時, , www.zxsx.com

           , .....11分

          因此數(shù)列是一個從第2項開始的公比為3的等比數(shù)列,

          數(shù)列的通項公式為.....13分

          20.(本小題滿分12分)

          解:(1)由于,

               ∴,解得,

               ∴橢圓的方程是.....3分
          (2)∵,∴三點共線,

          ,設直線的方程為,

             由消去得:

             由,解得.....6分

             設,由韋達定理得①,

              又由得:,∴②.

          將②式代入①式得:,

              消去得: .....10分

              設,當時, 是減函數(shù),

              ∴, ∴, www.zxsx.com

          解得,又由,

          ∴直線AB的斜率的取值范圍是.....13分

          21. (本小題滿分12分)

           (1)解:

               ①若

          ,則,∴,即.

                 ∴在區(qū)間是增函數(shù),故在區(qū)間的最小值是

          .....2分

               ②若

          ,得.

          又當時,;當時,,

          在區(qū)間的最小值是.....4分

             (2)證明:當時,,則,

                ∴,

                當時,有,∴內(nèi)是增函數(shù),

                ∴,

          內(nèi)是增函數(shù),www.zxsx.com

                ∴對于任意的,恒成立.....7分

             (3)證明:

          ,

                令

                則當時,

                                ,.....10分

                令,則,www.zxsx.com

          時, ;當時,;當時,,

          是減函數(shù),在是增函數(shù),

          ,

          ,即不等式對于任意的恒成立.....13分

           

           


          同步練習冊答案