日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給出下列命題: 查看更多

           

          題目列表(包括答案和解析)

          給出下列命題:
          ①若a,b∈R+,a≠b則a3+b3>a2b+ab2
          ②若a,b∈R+,a<b,則
          a+m
          b+m
          a
          b

          ③若a,b,c∈R+,則
          bc
          a
          +
          ac
          b
          +
          ab
          c
          ≥a+b+c

          ④若3x+y=1,則
          1
          x
          +
          1
          y
          ≥4+2
          3

          其中正確命題的個(gè)數(shù)為( 。
          A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

          查看答案和解析>>

          給出下列命題:
          (1)存在實(shí)數(shù)x,使sinx+cosx=
          3
          2
          ;
          (2)若α,β是第一象限角,且α>β,則cosα<cosβ;
          (3)函數(shù)y=sin(
          2
          3
          x+
          π
          2
          )
          是偶函數(shù);
          (4)函數(shù)f(x)=(1+cos2x)sin2x,x∈R,則f(x)是周期為
          π
          2
          的偶函數(shù).
          (5)函數(shù)y=cos(x+
          π
          3
          )
          的圖象是關(guān)于點(diǎn)(
          π
          6
          ,0)
          成中心對(duì)稱的圖形
          其中正確命題的序號(hào)是
           
           (把正確命題的序號(hào)都填上)

          查看答案和解析>>

          給出下列命題:
          ①|(zhì)
          a
          -
          b
          |≤|
          a
          |-|
          b
          |;②
          a
          ,
          b
          共線,
          b
          c
          平,則
          a
          c
          為平行向量;③
          a
          ,
          b
          ,
          c
          為相互不平行向量,則(
          b
          -
          c
          a
          -(
          c
          -
          a
          b
          c
          垂直;④在△ABC中,若a2taanB=b2tanA,則△ABC一定是等腰直角三角形;⑤
          a
          b
          =
          a
          c
          ,則
          a
          ⊥(
          b
          -
          c
          )   
          其中錯(cuò)誤的有
           

          查看答案和解析>>

          給出下列命題:
          ①存在實(shí)數(shù)α使sinα•cosα=1成立;
          ②存在實(shí)數(shù)α使sinα+cosα=
          3
          2
          成立;
          ③函數(shù)y=sin(
          2
          -2x)
          是偶函數(shù);
          x=
          π
          8
          是函數(shù)y=sin(2x+
          4
          )
          的圖象的一條對(duì)稱軸的方程;
          ⑤在△ABC中,若A>B,則sinA>sinB.
          其中正確命題的序號(hào)是
           
          (注:把你認(rèn)為正確的命題的序號(hào)都填上).

          查看答案和解析>>

          2、給出下列命題:
          (1)直線a與平面α不平行,則a與平面α內(nèi)的所有直線都不平行;
          (2)直線a與平面α不垂直,則a與平面α內(nèi)的所有直線都不垂直;
          (3)異面直線a、b不垂直,則過a的任何平面與b都不垂直;
          (4)若直線a和b共面,直線b和c共面,則a和c共面.其中錯(cuò)誤命題的個(gè)數(shù)為
          3

          查看答案和解析>>

          一、選擇題(本大題共10小題,每小題5分,共50分;每個(gè)小題給出四個(gè)選項(xiàng),只有一項(xiàng)符合要求)

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          C

          B

          A

          B

          D

          B

          B

          B

          A

          D

          二、填空題(本大題共5個(gè)小題,每小題5分,共25分)。

          11、;12、;13、;14、();15、①③④

          三、解答題(本大題共6小題,共75分,解答題應(yīng)寫出必要的文字說明,證明過程或演算步驟).

          16.解:(1)經(jīng)過各交叉路口遇到紅燈,相當(dāng)于獨(dú)立重復(fù)試驗(yàn),∴恰好遇到3次紅燈概率為……………………………………………………(6分)

             (2)記“經(jīng)過交叉路口遇到紅燈”事件為A,張華在第1、2個(gè)交叉路口未遇到紅燈,在第3個(gè)交叉路口遇到紅燈的概率為:

          ………………………………………………………(12分)

          17.解:(1)∵

          ,∴ ……………………………………………………2分

          的等比中項(xiàng)為2,∴

          ,∴,∴,…………………………………4分

          ………………………………………………………6分

          (2)……………………………………………………8分

          ………………………………………………………………10分

            ………………………………………………………12分

          18.(1)解:由

           

              ∴ 

              ∴……………………………………………8分

          (2)

          ……………………12分

          19.解法一(幾何法)

          (1)證明:∵E是CD中點(diǎn)

          ∴ED=AD=1

          ∴∠AED=45°

          同理∠CEB=45°

          ∴∠BEA=90°  ∴EB⊥EA

          ∵平面D1AE⊥平面ABCE

          ∴EB⊥平面D1AE,AD1平面D1AE

          ∴EB⊥AD1……4分

          (2)設(shè)O是AE中點(diǎn),連結(jié)OD1,因?yàn)槠矫?sub>

            過O作OF⊥AB于F點(diǎn),連結(jié)D1F,則D1F⊥AB,∴∠D1FO就是二面角D1-AB-E的平面角.

            在Rt△D1OF中,D1O=,OF=

          ,即二面角D1-AB-E等于………………………9分

          (3)延長FO交CD于G,過G作GH⊥D1F于H點(diǎn),

          ∵AB⊥平面D1FG  ∴GH⊥平面D1BA,

          ∵CE//AB   ∴CE//平面D1BA.

          ∴C到平面D1BA的距離等于GH.

          又D1F=

          ∵FG?D1O=D1F?GH

          ∴GH=  即點(diǎn)   ………………………13分 

          另解:在Rt△BED1中,BD1=. 又AD1=1,AB=2

             ∴∠BD1A=90°  ∴

          設(shè)點(diǎn)C到平面ABD1的距離為h 則

            

          …………………………………13分

          解法二:(向量法)

          (1)證明:取AE的中點(diǎn)O,AB的中點(diǎn)F,連結(jié)D1O、OF,則OF//BE。

          ∵ DE=DA=1  ∴∠AED=45°

           同理∠BEC=45° ∴∠BEA=90° ∴BE⊥EA  ∴OF⊥AE 

          由已知D1O⊥EA 

          又平面O1AE⊥平面ABCE,∴D1O⊥平面ABCE,以O(shè)為坐標(biāo)原點(diǎn),OF、OA、OD1所在直線分別為x、y、z軸,建立空間直角坐標(biāo)系。則B(),E(),D1),A(),C(

          ?=()?()=0

          ………………………………………………4分

          (2)解:設(shè)平面ABD1的一個(gè)法向量為

          ,則y=1,z=1

           …………………………………………………………………6分

          ∵ OD⊥平面ABCE.

          是平面ABE的一個(gè)法向量.

          即二面角D1-AB-E等于.  ………………………9分

          (3)設(shè)點(diǎn)C到平面ABD1的距離為d,

          ……………………………………………………………13分

          20.解:(1)因?yàn)?sub>在區(qū)間(,-2]上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減,所以方程f′(x)的兩根滿足,…………2分

          ,得,所以,而,故b=0………………4分

          ,從而

          ……………………………………………………………………6分

          (2)對(duì)任意的t1,t2[m-2,m],不等式恒成立,等價(jià)于在區(qū)間[m-2,m]上,當(dāng)0<m2時(shí),[m-2,m][ -2,2],所以在區(qū)間[m-2,m]上單調(diào)遞減,

          , ……………………………………………9分

          解得 ……………………………………………………………………11分

          ,∴,∴m的最小值是 ……………………………………13分

          21.解:(1)當(dāng)AC垂直于x軸時(shí),  由橢圓定義,有

            ………………………………………………………………2分

          在Rt△AF1F中,

            ∴  ∴…………………………………………4分

          (2)由得:

            ∴  ∴橢圓方程為

             設(shè),,

          (i)若直線AC的斜率存在,則直線AC方程為

            代入橢圓方程有:

            ∴

          由韋達(dá)定理得:所以 ………………………8分

          于是 同理可得:

          ……………………………………………………………………12分

          (ii)若直線AC⊥x軸,,,這時(shí),

          綜上可知,是定值6  …………………………………………………………13分

           


          同步練習(xí)冊(cè)答案