日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列中..數(shù)列的前n項(xiàng)和滿足 查看更多

           

          題目列表(包括答案和解析)

          (14分)在數(shù)列中,,數(shù)列的前n項(xiàng)和滿足

          (Ⅰ)求

          (Ⅱ)求;

            (Ⅲ)若,求

          查看答案和解析>>

          數(shù)列的前n項(xiàng)和記為點(diǎn)在直線上,.(1)若數(shù)列是等比數(shù)列,求實(shí)數(shù)的值;
          (2)設(shè)各項(xiàng)均不為0的數(shù)列中,所有滿足的整數(shù)的個數(shù)稱為這個數(shù)列的“積異號數(shù)”,令),在(1)的條件下,求數(shù)列的“積異號數(shù)”

          查看答案和解析>>

          數(shù)列的前n項(xiàng)和記為點(diǎn)在直線上,.(1)若數(shù)列是等比數(shù)列,求實(shí)數(shù)的值;
          (2)設(shè)各項(xiàng)均不為0的數(shù)列中,所有滿足的整數(shù)的個數(shù)稱為這個數(shù)列的“積異號數(shù)”,令),在(1)的條件下,求數(shù)列的“積異號數(shù)”

          查看答案和解析>>

          數(shù)列的前n項(xiàng)和Sn滿足:Sn=2an-3n(nÏN+)

          1)求數(shù)列的通項(xiàng)公式an;

          2)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的項(xiàng);若不存在,請說明理由.

           

          查看答案和解析>>

          數(shù)列的前n項(xiàng)和Sn滿足:Sn=2an-3n(nÏN+)

          1)求數(shù)列的通項(xiàng)公式an

          2)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的項(xiàng);若不存在,請說明理由.

           

          查看答案和解析>>

          1.C  2.B  3.B  4.D  5.C   6.A  7.B  8.B  9.D  10.C

          11.   12.1                13.        14.4            15.

          16.當(dāng)a>1時,有,∴,∴,∴,∴當(dāng)0<a<1時,有,∴.

          綜上,當(dāng)a>1時,;當(dāng)0<a<1時,

          17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:

          (Ⅱ)出現(xiàn)奇數(shù)枚正面朝上的概率為:

          ∴出現(xiàn)偶數(shù)枚正面朝上的概率為,∴概率相等.

          18.(Ⅰ)在梯形ABCD中,∵,

           

           

          ∴四邊形ABCD是等腰梯形,

          ,∴

          又∵平面平面ABCD,交線為AC,∴平面ACFE.

          (Ⅱ)當(dāng)時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則

          ,∴∴MFAN,

          ∴四邊形ANFM是平行四邊形. ∴

          又∵平面BDF,平面BDF. ∴平面BDF.

          19.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.

          ∴橢圓C的方程為

          (Ⅱ),設(shè)點(diǎn),則

          ,

          ,∴,∴的最小值為6.

          20.(Ⅰ)設(shè),,

          單調(diào)遞增.

          (Ⅱ)當(dāng)時,,又,,即;

                當(dāng)時,,,由,得.

          的值域?yàn)?sub>

          (Ⅲ)當(dāng)x=0時,,∴x=0為方程的解.

          當(dāng)x>0時,,∴,∴

          當(dāng)x<0時,,∴,∴

          即看函數(shù)

          與函數(shù)圖象有兩個交點(diǎn)時k的取值范圍,應(yīng)用導(dǎo)數(shù)畫出的大致圖象,∴,∴

           

          21.(Ⅰ)令n=1有,,∴,∴.

           

          (Ⅱ)∵……① ∴當(dāng)時,有……②

          ①-②有

          將以上各式左右兩端分別相乘,得,∴

          當(dāng)n=1,2時也成立,∴.

          (Ⅲ),當(dāng)時,

          當(dāng)時,

          當(dāng)時,

          當(dāng)時,

           

           

           

           


          同步練習(xí)冊答案