日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .設(shè)點P.Q是橢圓C上的兩個動點.滿足.求的最小值. 查看更多

           

          題目列表(包括答案和解析)

          已知點P(-3,0),點A在y軸上,點Q在x軸非負半軸上,點M在直線AQ上,滿足·=0,=-.

          (1)當(dāng)點A在y軸上移動時,求動點M的軌跡C的方程;

          (2)設(shè)軌跡C的準線為l,焦點為F,過F作直線m交軌跡C于G,H兩點,過點G作平行于軌跡C的對稱軸的直線n,且n∩l=E,試問點E,O,H(O為坐標原點)是否在同一條直線上?并說明理由.

          查看答案和解析>>

          已知點P(-3,0),點A在y軸上,點Q在x軸非負半軸上,點M在直線AQ上,滿足·=0,=-.
          (1)當(dāng)點A在y軸上移動時,求動點M的軌跡C的方程;
          (2)設(shè)軌跡C的準線為l,焦點為F,過F作直線m交軌跡C于G,H兩點,過點G作平行于軌跡C的對稱軸的直線n,且n∩l=E,試問點E,O,H(O為坐標原點)是否在同一條直線上?并說明理由.

          查看答案和解析>>

          精英家教網(wǎng)已知點P (4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
          x2
          a2
          +
          y2
          b2
          =1
          (a>0,b>0)的一個公共點為A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,直線PF1與圓C相切.
          (1)求m的值與橢圓E的方程.
          (2)設(shè)D為直線PF1與圓C的切點,在橢圓E上是否存在點Q,使△PDQ是以PD為底的等腰三角形?若存在,請指出共有幾個這樣的點?并說明理由.

          查看答案和解析>>

          已知點E、F的坐標分別是(-2,0)、(2,0),直線EP、FP相交于點P,且它們的斜率之積為-
          1
          4

          (1)求證:點P的軌跡在一個橢圓C上,并寫出橢圓C的方程;
          (2)設(shè)過原點O的直線AB交(1)中的橢圓C于點A、B,定點M的坐標為(1,
          1
          2
          )
          ,試求△MAB面積的最大值,并求此時直線AB的斜率kAB;
          (3)反思(2)題的解答,當(dāng)△MAB的面積取得最大值時,探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個特例),試提出一個猜想或設(shè)計一個問題,嘗試研究解決.
          [說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評分].

          查看答案和解析>>

          已知點P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:(a>b>0)有一個公共點A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左,右焦點,直線PF1與圓C相切。

          (1)求m的值與橢圓E的方程;
          (2)設(shè)Q為橢圓E上的一個動點,求的取值范圍。

          查看答案和解析>>

          1.B  2.D  3.A  4.A  5.A  6.B  7.B  8.B  9.C  10.C

          11.     12.4       13.2.442       14.       15.9,15

          16.(Ⅰ),∴,

          ,∴

           

          (Ⅱ)

          ,∴,

          17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為 

             (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524

             

          所以2號射箭運動員的射箭水平高.

          18.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.∴橢圓C的方程為

          (Ⅱ),設(shè)點,則

          ,∵,∴,∴的最小值為6.

          19.(Ⅰ)在梯形ABCD中,∵,

          ∴四邊形ABCD是等腰梯形,

          ,∴

          又∵平面平面ABCD,交線為AC,∴平面ACFE.

          (Ⅱ)當(dāng)時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則

          ,∴∴MFAN,

          ∴四邊形ANFM是平行四邊形. ∴

          又∵平面BDF,平面BDF. ∴平面BDF.

          (Ⅲ)取EF中點G,EB中點H,連結(jié)DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

          是二面角B―EF―D的平面角.

          在△BDE中,

          又又∴在△DGH中,

          由余弦定理得即二面角B―EF―D的大小為

          20.(Ⅰ)設(shè),

          單調(diào)遞增.

          (Ⅱ)當(dāng)時,,又,即;

            當(dāng)時,,,由,得.

          的值域為

          (Ⅲ)當(dāng)x=0時,,∴x=0為方程的解.

          當(dāng)x>0時,,∴,∴

          當(dāng)x<0時,,∴,∴

          即看函數(shù)

          與函數(shù)圖象有兩個交點時k的取值范圍,應(yīng)用導(dǎo)數(shù)畫出的大致圖象,

          ,∴

          21.(Ⅰ)當(dāng)時, ,∴,令 有x=0,

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增.

          ;

          (Ⅱ)∵,∴

          為首項是1、公比為的等比數(shù)列. ∴;

          (Ⅲ)∵,由(1)知,

          ,即證.

           


          同步練習(xí)冊答案