日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 萬元的利潤.對(duì)項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤.該公司正確規(guī)劃投資后.在兩個(gè)項(xiàng)目上共可獲得的最大利潤為 萬元. 查看更多

           

          題目列表(包括答案和解析)

          某公司有60萬元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,按要求對(duì)項(xiàng)目甲的投資不小于對(duì)項(xiàng)目乙投資的倍,且對(duì)每個(gè)項(xiàng)目的投資不能低于5萬元.對(duì)項(xiàng)目甲每投資1萬元可獲得0.4萬元的利潤,對(duì)項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個(gè)項(xiàng)目上共可獲得的最大利潤為(  )

          (A)36萬元              (B)31.2萬元

          (C)30.4萬元             (D)24萬元

          查看答案和解析>>

          現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對(duì)甲項(xiàng)目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為
          1
          6
          、
          1
          2
          、
          1
          3
          ;已知乙項(xiàng)目的利潤與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是P(0<P<1),設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為ζ,對(duì)乙項(xiàng)目每投資十萬元,ξ取0、1、2時(shí),一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量ξ1、ξ2分別表示對(duì)甲、乙兩項(xiàng)目各投資十萬元一年后的利潤.
          (I)求ξ1、ξ2的概率分布和數(shù)學(xué)期望Eξ1、Eξ2
          (II)當(dāng)Eξ1<Eξ2時(shí),求P的取值范圍.

          查看答案和解析>>

          現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對(duì)甲項(xiàng)目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、;已知乙項(xiàng)目的利潤與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是,設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為,對(duì)乙項(xiàng)目每投資十萬元, 取0、1、2時(shí), 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對(duì)甲、乙兩項(xiàng)目各投資十萬元一年后的利潤.

          (I)  求、的概率分布和數(shù)學(xué)期望、;

          (II)  當(dāng)時(shí),求的取值范圍.

          查看答案和解析>>

          現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對(duì)甲項(xiàng)目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、;已知乙項(xiàng)目的利潤與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是,設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為,對(duì)乙項(xiàng)目每投資十萬元, 取0、1、2時(shí), 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對(duì)甲、乙兩項(xiàng)目各投資十萬元一年后的利潤.

          (I)  求、的概率分布和數(shù)學(xué)期望;

          (II)  當(dāng)時(shí),求的取值范圍.

          查看答案和解析>>

          現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對(duì)甲項(xiàng)目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、、;已知乙項(xiàng)目的利潤與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是p(0<p<1),設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為ξ,對(duì)乙項(xiàng)目每投資十萬元,ξ取0、1、2時(shí),一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量ξ1、ξ2分別表示對(duì)甲、乙兩項(xiàng)目各投資十萬元一年后的利潤.

          (1)求ξ1、ξ2的概率分布和數(shù)學(xué)期望Eξ1、Eξ2;

          (2)當(dāng)Eξ1<Eξ2時(shí),求p的取值范圍.

          查看答案和解析>>

          一、選擇題(每小題5分,共50分)

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          B

          A

          B

          B

          C

          C

          A

          D

          C

          D

           

          二、填空題(每小題5分,共20分)

          11.     8     ;              12. AC⊥BD ( ABCD是正方形或菱形); 

          13.         ;              14.           ;

          三、解答題(本大題共6小題,共80分. 解答應(yīng)寫出文字說明、證明過程或演算步驟)

          15.(本小題滿分12分)

          解:(1)           …………………………1分

                ………………………………2分

          .      ………………………………………4分

          的最小正周期是.      …………………………………6分

          (2)由      …………………….8分

          ,∴ ∴     …………10分

                 ………………………………………………12分

          16.(本小題滿分12分)

          解:(1)當(dāng)時(shí),,對(duì)任意

                為偶函數(shù)   ……………………3分

                當(dāng)時(shí),

                取,得    

                  函數(shù)既不是奇函數(shù),也不是偶函數(shù)……6分

          (2)解法一:要使函數(shù)上為增函數(shù)等價(jià)于上恒成立                              ……………8分

          上恒成立,故上恒成立

                             …………………………………10分

          ∴  的取值范圍是           ………………………………12分

          解法二:設(shè)

              ………8分 

              要使函數(shù)上為增函數(shù),必須恒成立

              ,即恒成立   …………………………………10分

              又,  

              的取值范圍是       ………………………………12分

          17.(本小題滿分14分)

          證明: (1)取PC的中點(diǎn)G,連結(jié)FG、EG

          ∴FG為△CDP的中位線  ∴FGCD……1分

          ∵四邊形ABCD為矩形,E為AB的中點(diǎn)

          ∴ABCD     ∴FGAE

          ∴四邊形AEGF是平行四邊形   ………………2分

          ∴AF∥EG                       ………3分

          又EG平面PCE,AF平面PCE  ………4分

          ∴AF∥平面PCE   ………………………………………5分

               (2)∵ PA⊥底面ABCD

          ∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A

          ∴CD⊥平面ADP

          又AF平面ADP         ∴CD⊥AF ……………………………… 6分

          直角三角形PAD中,∠PDA=45°

          ∴△PAD為等腰直角三角形   ∴PA=AD=2   …………………………  7分

          ∵F是PD的中點(diǎn)

          ∴AF⊥PD,又CDPD=D

          ∴AF⊥平面PCD                    ………………………………  8分

          ∵AF∥EG

          ∴EG⊥平面PCD                    ……………………………  9分

          又EG平面PCE

          平面PCE⊥平面PCD                 …………………………… 10分

          (3)三棱錐C-BEP即為三棱錐P-BCE     ……………………………11分

          PA是三棱錐P-BCE的高,

          Rt△BCE中,BE=1,BC=2,

          ∴三棱錐C-BEP的體積

          VC-BEP=VP-BCE= … 14分

          18.(本小題滿分14分)

          解:(1)由已知得          解得.…………………1分

              設(shè)數(shù)列的公比為,由,可得

          ,可知,即,      …………………4分

          解得

          由題意得.  .………………………………………… 6分

          故數(shù)列的通項(xiàng)為.  … ……………………………………8分

          (2)由于    由(1)得

              =  ………………………………………10分

              又

              是首項(xiàng)為公差為的等差數(shù)列            ……………12分

             

                  …………………………14分

          19.(本小題滿分14分)

          解:(1)如圖,設(shè)為動(dòng)圓圓心, ,過點(diǎn)作直線的垂線,垂足為,由題意知:             ……………………………………2分

          即動(dòng)點(diǎn)到定點(diǎn)與到定直線的距離相等,

          由拋物線的定義知,點(diǎn)的軌跡為拋物線,其中為焦點(diǎn),            

          為準(zhǔn)線, 

          ∴動(dòng)圓圓心的軌跡方程為     ……………………………………5分

          (2)由題可設(shè)直線的方程為

             

             △,    ………………………………………………7分

          設(shè),,則,  ………………………9分

             由,即 ,,于是,……11分

          ,,

             ,解得(舍去),  …………………13分

          ,   ∴ 直線存在,其方程為       ……………14分

          20.(本小題滿分14分)

          解:(1)由已知,得,比較兩邊系數(shù),

          .      ……………………4分

             (2)令,要有三個(gè)不等的實(shí)數(shù)根,則函數(shù)

          一個(gè)極大值和一個(gè)極小值,且極大值大于0,極小值小于0.  …………5分

          由已知,得有兩個(gè)不等的實(shí)根,

          ,     得.……… 6分

          ,,將代入(1)(3),有,又

          ,              ………8分

          ,且處取得極大值,在處取得極小值10分      故要有三個(gè)不等的實(shí)數(shù)根,

          則必須                 ……………… 12分

            解得.                            ………………… 14分

           

           


          同步練習(xí)冊(cè)答案