日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 易得直線(xiàn):.由.得M(.-),------ 12分 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿(mǎn)足異面直線(xiàn)BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線(xiàn)必與線(xiàn)段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線(xiàn)BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          ,為常數(shù),離心率為的雙曲線(xiàn)上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線(xiàn)的焦點(diǎn)與雙曲線(xiàn)的一頂點(diǎn)重合。(Ⅰ)求拋物線(xiàn)的方程;(Ⅱ)過(guò)直線(xiàn)為負(fù)常數(shù))上任意一點(diǎn)向拋物線(xiàn)引兩條切線(xiàn),切點(diǎn)分別為,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

          【解析】第一問(wèn)中利用由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程

          第二問(wèn)中,,,

          故直線(xiàn)的方程為,即,

          所以,同理可得:

          借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以

          由已知易得,即

          解:(Ⅰ)由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程

          (Ⅱ)設(shè),,

          故直線(xiàn)的方程為,即,

          所以,同理可得:,

          ,是方程的兩個(gè)不同的根,所以

          由已知易得,即

           

          查看答案和解析>>

          關(guān)于平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類(lèi)比,易得下列結(jié)論:
          a
          b
          =
          b
          a
          ;②(
          a
          b
          )•
          c
          =
          a
          •(
          b
          c
          )
          ;③
          a
          •(
          b
          +
          c
          )=
          a
          b
          +
          a
          c

          |
          a
          b
          |=|
          a
          |•|
          b
          |
          ;⑤由
          a
          b
          =
          a
          c
          (
          a
          0
          )
          ,可得
          b
          =
          c

          以上通過(guò)類(lèi)比得到的結(jié)論正確的有(  )
          A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

          查看答案和解析>>

          將平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類(lèi)比,易得下列結(jié)論:
          (1)
          a
          b
          =
          b
          a
          ;
          (2)(
          a
          b
          )•
          c
          =
          a
           •(
          b
          c
          )
          ;
          (3)
          a
          •(
          b
          +
          c
          )=
          a
          b
          +
          a
          • 
          c
          ;
          (4)由
          a
          b
          =
          a
          c
          (
          a
          0
          )
          可得
          b
          =
          c

          以上通過(guò)類(lèi)比得到的結(jié)論正確的有( 。

          查看答案和解析>>

          關(guān)于平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類(lèi)比,易得下列結(jié)論:①;②;③;

          ;⑤由可得

          以上通過(guò)類(lèi)比得到的結(jié)論正確的有(    )

          A.2個(gè)           B.3個(gè)           C.4個(gè)           D.5個(gè)

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案