日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知函數(shù)。

          (1)證明:

          (2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

          (3)設(shè)數(shù)列滿足:,設(shè)

          若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

          (Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當(dāng),求直線的方程.

          查看答案和解析>>

          (本小題滿分14分)設(shè)函數(shù)

           (1)求函數(shù)的單調(diào)區(qū)間;

           (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分14分)

          已知,其中是自然常數(shù),

          (1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,;

          (3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分14分)

          設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

          (I)求數(shù)列的通項公式;

          (II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;

          (III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

          一、選擇題:

            

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          A

          D

          A

          D

          B

          C

          A

          C

          B

          A

          二、填空題:

          11.       12.         13.       14.    15.64

          16.設(shè)是三棱錐四個面上的高為三棱錐內(nèi)任一點,到相應(yīng)四個面的距離分別為我們可以得到結(jié)論:

          17.

           

          三、解答題:

          18.解:(1)由圖像知 , ,,又圖象經(jīng)過點(-1,0)

            

                

             (2)

            

               ,  

          當(dāng)時,的最大值為,當(dāng),

           即時,  最小值為

           

          19.(1)由幾何體的正視圖、側(cè)視圖、俯視圖的面積總和為8得中點,聯(lián)結(jié)分別是的中點,,E、F、F、G四點共面

          平面,平面

          (2)就是二面角的平面角

          中,, 

          ,即二面角的大小為

          解法二:建立如圖所示空間直角坐標(biāo)系,設(shè)平面

          的一個法向量為

                  

          ,又平面的法向量為(1,0,0)

          (3)設(shè)

          平面是線段的中點

           

          20.解(1)由題意可知

            又

          (2)兩類情況:共擊中3次概率

          共擊中4次概率

          所求概率為

          (3)設(shè)事件分別表示甲、乙能擊中,互相獨立。

          為所 求概率

           

          21.解(1)設(shè)過拋物線的焦點的直線方程為(斜率不存在),則    得,

          當(dāng)(斜率不存在)時,則

            ,所求拋物線方程為

          (2)設(shè)

          由已知直線的斜率分別記為:,得

              

            

           

          22.解:(I)依題意知:直線是函數(shù)在點(1,0)處的切線,故其斜率所以直線的方程為

          又因為直線的圖像相切  所以由

             (Ⅱ)因為所以

          當(dāng)時,  當(dāng)時, 

          因此,上單調(diào)遞增,在上單調(diào)遞減。

          因此,當(dāng)時,取得最大值

          (Ⅲ)當(dāng)時,,由(Ⅱ)知:當(dāng)時,,即因此,有

           


          同步練習(xí)冊答案