日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (10)提示:過直線任作一平面的是任意的.所以這樣的平面有無數(shù)對. 查看更多

           

          題目列表(包括答案和解析)

          已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

          (I)求曲線的方程;

          (II)試證明:在軸上存在定點,使得總能被軸平分

          【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

          ,曲線的方程為

          第二問中,設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 

          ,∴

          確定結(jié)論直線與曲線總有兩個公共點.

          然后設(shè)點,的坐標(biāo)分別, ,則,  

          要使軸平分,只要得到。

          (1)設(shè)為曲線上的任意一點,則點在圓上,

          ,曲線的方程為.  ………………2分       

          (2)設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 ,……5分            

          ,∴,

          ∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

          ………………6分

          設(shè)點,的坐標(biāo)分別, ,則,   

          要使軸平分,只要,            ………………9分

          ,,        ………………10分

          也就是,

          ,即只要  ………………12分  

          當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.

          所以在x軸上存在定點,使得總能被軸平分

           

          查看答案和解析>>

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點與拋物線C2y2=4x的焦點F重合,點M是C1與C2在第一象限內(nèi)的交點,且|MF|=
          5
          3

          (1)求橢圓C1的方程;
          (2)設(shè)拋物線的準(zhǔn)線與x軸交于點E,過E任作一條直線l,l與橢圓C1的兩個交點記為A,B.問:在橢圓的長軸上是否存在一點P,使
          PA
          PB
          為定值?若存在,求出點P的坐標(biāo)及相應(yīng)的定值;若不存在,請說明理由.

          查看答案和解析>>

          (2013•威海二模)已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為e=
          6
          3
          ,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
          2
          6
          3
          +2

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
          ND
          MP
          AB
          2
          為定值.

          查看答案和解析>>

          (2011•黑龍江一模)已知拋物線y2=2px(p>0),F(xiàn)為其焦點,l為其準(zhǔn)線,過F任作一條直線交拋物線于A、B兩點,A'、B'分別為A、B在l上的射影,M為A'B'的中點,給出下列命題:
          ①A'F⊥B'F;
          ②AM⊥BM;
          ③A'F∥BM;
          ④A'F與AM的交點在y軸上;
          ⑤AB'與A'B交于原點.
          其中真命題的個數(shù)為( 。

          查看答案和解析>>

          (2013•威海二模)已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為e=
          6
          3
          ,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
          2
          6
          3
          +2

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)點M(2,0),直線l:y=1,過M任作一條不與y軸重合的直線l1與橢圓相交于A、B兩點,過AB的中點N作直線l2與y軸交于點P,D為N在直線l上的射影,若|ND|、
          1
          2
          |AB|
          、|MP|成等比數(shù)列,求直線l2的斜率的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案