日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又.綜上得平面. 查看更多

           

          題目列表(包括答案和解析)

          已知,(其中

          ⑴求;

          ⑵試比較的大小,并說明理由.

          【解析】第一問中取,則;                         …………1分

          對等式兩邊求導,得

          ,則得到結論

          第二問中,要比較的大小,即比較:的大小,歸納猜想可得結論當時,;

          時,;

          時,;

          猜想:當時,運用數(shù)學歸納法證明即可。

          解:⑴取,則;                         …………1分

          對等式兩邊求導,得,

          ,則。       …………4分

          ⑵要比較的大小,即比較:的大小,

          時,

          時,

          時,;                              …………6分

          猜想:當時,,下面用數(shù)學歸納法證明:

          由上述過程可知,時結論成立,

          假設當時結論成立,即,

          時,

          時結論也成立,

          ∴當時,成立。                          …………11分

          綜上得,當時,;

          時,

          時, 

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當時,,則。

          依題意得:,即    解得

          第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調(diào)性的判定,得到極值和最值

          第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          (Ⅰ)當時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當時,,令

          變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,。∴上的最大值為2.

          ②當時, .當時, ,最大值為0;

          時, 上單調(diào)遞增!最大值為。

          綜上,當時,即時,在區(qū)間上的最大值為2;

          時,即時,在區(qū)間上的最大值為

          (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>

          ((本小題共13分)

          若數(shù)列滿足,數(shù)列數(shù)列,記=.

          (Ⅰ)寫出一個滿足,且〉0的數(shù)列;

          (Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

          (Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列,使得=0?如果存在,寫出一個滿足條件的E數(shù)列;如果不存在,說明理由。

          【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。

          (答案不唯一,0,1,0,1,0也是一個滿足條件的E的數(shù)列A5

          (Ⅱ)必要性:因為E數(shù)列A5是遞增數(shù)列,所以.所以A5是首項為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結論得證。

           

           

          查看答案和解析>>

          已知數(shù)列的前項和為,且 (N*),其中

          (Ⅰ) 求的通項公式;

          (Ⅱ) 設 (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結論。

          解:(Ⅰ)當時,由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對偶式)設,

          .又,也即,所以,也即,又因為,所以.即

                              ………10分

          證法四:(數(shù)學歸納法)①當時, ,命題成立;

             ②假設時,命題成立,即,

             則當時,

              即

          故當時,命題成立.

          綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>

          已知向量),向量,

          .

          (Ⅰ)求向量; (Ⅱ)若,,求.

          【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。

          (1)問中∵,∴,…………………1分

          ,得到三角關系是,結合,解得。

          (2)由,解得,,結合二倍角公式,和,代入到兩角和的三角函數(shù)關系式中就可以求解得到。

          解析一:(Ⅰ)∵,∴,…………1分

          ,∴,即   ①  …………2分

           ②   由①②聯(lián)立方程解得,5分

               ……………6分

          (Ⅱ)∵,,  …………7分

          ,               ………8分

          又∵,          ………9分

          ,            ……10分

          解法二: (Ⅰ),…………………………………1分

          ,∴,即,①……2分

              ②

          將①代入②中,可得   ③    …………………4分

          將③代入①中,得……………………………………5分

             …………………………………6分

          (Ⅱ) 方法一 ∵,,∴,且……7分

          ,從而.      …………………8分

          由(Ⅰ)知, ;     ………………9分

          .     ………………………………10分

          又∵,∴, 又,∴    ……11分

          綜上可得  ………………………………12分

          方法二∵,,∴,且…………7分

          .                                 ……………8分

          由(Ⅰ)知, .                …………9分

                       ……………10分

          ,且注意到,

          ,又,∴   ………………………11分

          綜上可得                    …………………12分

          (若用,又∵ ∴ ,

           

          查看答案和解析>>


          同步練習冊答案