日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)求函數(shù)的最大值及取得最大值時的值, 查看更多

           

          題目列表(包括答案和解析)

          求函數(shù)的最大值及取得最大值時x的值.

          查看答案和解析>>

          求函數(shù)的最大值及取得最大值時x的值.

          查看答案和解析>>

          設(shè)函數(shù)的最高點D的坐標(biāo)為(,2),由最高點D運動到相鄰最低點時,函數(shù)圖象與x的交點的坐標(biāo)為(,0)。
          (1)求函數(shù)的解析式;
          (2)當(dāng)時,求函數(shù)的最大值和最小值以及分別取得最大值和最小值時相應(yīng)的自變量x的值;
          (3)將函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象,求函數(shù)的單調(diào)減區(qū)間。

          查看答案和解析>>

          函數(shù)f(x)=2cos2x+2sinx+1,x∈[-
          π
          3
          6
          ]
          ,求該函數(shù)的最大值和最小值以及取得最值時的x的值.

          查看答案和解析>>

          已知函數(shù)的最小正周期為π.
          (1)求f(x)的解析式;
          (2)求f(x)在區(qū)間上的最大值和最小值及取得最值時x的值.

          查看答案和解析>>

          一、 選擇題:1. A  2. B  3. D  4. B  5. A  6. A  7. C  8. C  9. D  10. C 

          11. C  12. B

          二、 填空題:13. 7;14. 111;15. 323;16. 3

          三、 解答題:

          17. 解:(1) ∵f(0)=8,

          ………………2分

            ∴………………………6分

          (2) 由(1)知:…………………7分

          ……………………8分

          …………………9分

          ………………………10分

          ,此時 (k∈Z)………………………11分

          (k∈Z)時,.……………………………12分

          18. 解:(1) ,…3分

          ∴分布列為:

          0

          1

          2

          ………………………………………………5分

          ……………………………7分

          (2) ……………………12分

          19. 解:(1) 設(shè)數(shù)列的前n項和為,由題意知:

          即?,兩式相減可得:………………………2分

          (n∈)…………………………4分

          設(shè)數(shù)列的前n項和為,由題意知:,即

          兩式相除可得:,則………………………6分

          (n∈)………………………8分

          (2) 假設(shè)存在,則,

          為正整數(shù).

          故存在p,滿足………………12分

          20. 解法一:(1) 連結(jié)交BD于F.

          6ec8aac122bd4f6e∵D為中點,,

          ,

          Rt△BCD∽Rt△,∴∠=∠CDB,

          ⊥BD………………2分

          ∵直三棱柱中,平面ABC⊥平面

          又AC⊥BC,∴AC⊥平面,∴AC⊥BD,

          AC∩=C,BD⊥平面,∴⊥BD…………………4分

          又在正方形中,…………………………………5分

          ⊥平面.……………………………6分

          (2) 設(shè)交于點M,AC=1,連結(jié)AF、MF,

          由(1)知BD⊥平面,∴MF⊥BD,AF⊥BD,

          ∴∠AFM是二面角A-BD-的平面角………………………9分

          在Rt△AFB中,AB=,BF=,∠AFB = 90°,

          ∴AF=,又,∠AMF = 90°,∴sin∠AFM=,∴∠AFM=,

          故二面角A-BD-的大小為.…………………………12分

          方法二:直三棱柱中,∠ACB=90°,

          以C為原點O,CB、、CA分別為x軸、y軸、z軸建立空間直角坐標(biāo)系如圖,設(shè)AC=2,

          則B(2,0,0),,,A(0,0,2),D(0, ,0)…………………2分

          (1) ,,

          ,,…………………4分

          ⊥BD,,又∩BD=D,

          ⊥平面;……………………………6分

          6ec8aac122bd4f6e(2) 由(1)知⊥平面,且,…8分

          設(shè),且,

          ,,

          ,,即2x-2z=0,-2x+2y=0,令x=1,

          得平面ABD的一法向量,………………10分

          ,∴,

          ∴二面角的大小為.…………………………………12分

          21. 解:(1) 設(shè)P(x,y)代入得點P的軌跡方程為.……5分

          (2) 設(shè)過點C的直線斜率存在時的方程為,且A(),B()在上,則由代入

          .…………………6分

          ,.

          .………………8分

          ,∴.…8分

          ≥0,∴<0,∴.………………10分

          當(dāng)過點C的直線斜率不存在時,其方程為x=-1,解得,.此時.11分

          所以的取值范圍為.………………12分

          22. 解:(1) ……3分

          >0.以下討論函數(shù)的情況.

          ① 當(dāng)a≥0時,≤-1<0,即<0.

          所以在R上是單調(diào)遞減的.…………………………5分

          ② 當(dāng)a<0時,的兩根分別為.

          在(-∞, )和(,+∞)上>0,即>0.

          所以函數(shù)的遞增區(qū)間為(-∞, )和(,+∞);

          同理函數(shù)f(x)的遞減區(qū)間為().………………9分

          綜上所述:當(dāng)a≥0時,在R上是單調(diào)遞減的;

          當(dāng)a<0時,在(-∞, )和(,+∞)上單調(diào)遞增,

          在(,)上是單調(diào)遞減的.………………………10分

          (2) 當(dāng)-1<a<0時,<1, =>2,………12分

          ∴當(dāng)x∈[1,2]時,是單調(diào)遞減的.………………13分

          . ………………………………14分

           


          同步練習(xí)冊答案